

State of fisheries in Catalonia 2021, Part 1: Report on the monitoring of the commercial fishing fleet

Generalitat de Catalunya Departament d'Acció Climàtica, Alimentació i Agenda Rural

[2]

This report presents the state of fisheries in Catalonia in 2021. Section 1 describes the results of the monitoring of the commercial fishing fleet throughout the year, Section 2 describes the changes and updates made to the information systems and data analysis structures, and Section 3 analyzes the temporal and spatial structure of bottom trawling fishery *métiers* in Catalonia.

Scientific team: Joan B. Company, Laura Recasens, and Antoni Lombarte (coord.), Pere Abelló, Ana I. Colmenero, Cristina López-Pérez, Ana Sabatés, Pilar Sánchez, and Roger Villanueva.

Technical team: Marta Carretón (coord.), Marc Balcells, Marta Blanco, Ferran Bustos, Eve Galimany, Mariona Garriga-Panisello, Mauro Gómez, David Nos, Xènia Puigcerver, Marta Pujol, Jordi Ribera, Alberto J. Rico, Alba Rojas, Joan Sala-Coromina, Ricardo Santos-Bethencourt, Mireia Silvestre, and Camila Vidal.

How to cite this document

Institut Català de Recerca per a la Governança del Mar (ICATMAR). State of fisheries in Catalonia 2021, Part 1: report on the monitoring of the commercial fishing fleet (ICATMAR, 22-04) 202 pp, Barcelona. DOI: 10.2436/10.8080.05.14

Image credits:

Front page (David Nos and Marc Balcells), section 1 (Alba Rojas and David Nos), bottom trawling (David Nos and Marta Blanco, Purse seine (Alba Rojas and David Nos), small-scale fishing (Marc Balcells and David Nos), section 2 (Marc Balcells), section 3 (Marta Blanco and David Nos) and Annexes (Alba Rojas).

Table of contents

Glossary	13
Executive summary	15
SECTION 1: Biological and fishery monitoring	21
Introduction	23
Method	24
Bottom trawling sampling	24
Purse seine fishing sampling	26
Small-scale fisheries sampling	27
Sand eel fishery sampling	27
Common octopus fishery sampling	28
Calculations and data analysis	28
Bottom trawling	29
Bottom trawling fishery in Catalonia	31
Bottom trawling by species	42
Hake (<i>Merluccius merluccius</i>) HKE	42
Norway lobster (<i>Nephrops norvegicus</i>) NEP	45
Blue and red shrimp (<i>Aristeus antennatus</i>) ARA	48
Horned octopus (<i>Eledone cirrhosa</i>) EOI	51
Spottail mantis shrimp (Squilla mantis) MTS	54
Bottom trawling by port	61
Roses	62
Palamós	64
Blanes	66
Arenys de Mar	68
Barcelona	70
Vilanova i la Geltrú	72
Tarragona	74
L'Ametlla de Mar	76
La Ràpita	78
Purse seine fishing	81
Purse seine fishing by species	83
European sardine (<i>Sardina pilchardus</i>) PIL	83
Anchovy (<i>Engraulis encrasicolus</i>) ANE	85
Small-scale fisheries	87

Common octopus (Octopus vulgaris) OCC93Common octopus fishery in Central Catalonia95Common octopus fishery in the Ebre Delta96SECTION 2: Information systems and data analysis Puse 99Introduction101Data input102Purse seine on-board sampling102Common octopus fishery103Sampling GPS data103Bottom trawling fishery103Common octopus (Octopus vulgaris) fishery103Common octopus (Octopus vulgaris) fishery105External data: keeping updated106Other projects108Updated database structure108Database content109Improvements in data analysis. VMS interpolation111Data processing111Data visualization114General viewer114Scientific viewer115	 Sand eel fishery Sand eel fishery in Catalonia Sand eel fishery by species Mediterranean sand eel (<i>Gymnammodytes cicerelus</i>) ZGC Smooth sand eel (<i>Gymnammodytes semisquamatus</i>) ZGS Transparent goby (<i>Aphia minuta</i>) FIM Common octopus fishery 	 88 89 89 91 92 93
Common octopus fishery in the Ebre Delta96SECTION 2: Information systems and data analysis99Introduction101Data input102Purse seine on-board sampling102Common octopus fishery103Sampling GPS data103Bottom trawling fishery103Purse seine and sand eel fishery103Common octopus (Octopus vulgaris) fishery105External data: keeping updated106Other projects108Updated database structure108Database content109Improvements in data analysis. VMS interpolation111Sampling biological calculations111Data visualization114General viewer114Scientific viewer115	Common octopus (<i>Octopus valgaris</i>) OCC	95 95
SECTION 2: Information systems and data analysis99Introduction101Data input102Purse seine on-board sampling102Common octopus fishery103Sampling GPS data103Bottom trawling fishery103Purse seine and sand eel fishery103Common octopus (Octopus vulgaris) fishery103Common octopus (Octopus vulgaris) fishery105External data: keeping updated106Other projects108Data storage108Database content109Improvements in data analysis. VMS interpolation111Sampling biological calculations111Data rocessing111General viewer114Scientific viewer115	Common octopus fishery in the Ebre Delta	96
Introduction101Data input102Purse seine on-board sampling102Common octopus fishery103Sampling GPS data103Bottom trawling fishery103Purse seine and sand eel fishery103Common octopus (Octopus vulgaris) fishery103Common octopus (Octopus vulgaris) fishery105External data: keeping updated106Other projects108Updated database structure108Database content109Improvements in data analysis. VMS interpolation111Sampling biological calculations111Data visualization114General viewer114Scientific viewer115	SECTION 2: Information systems and data analysis	99
Data input102Purse seine on-board sampling102Common octopus fishery103Sampling GPS data103Bottom trawling fishery103Purse seine and sand eel fishery103Common octopus (Octopus vulgaris) fishery105External data: keeping updated106Other projects108Data storage108Database content109Improvements in data analysis. VMS interpolation111Sampling biological calculations111Data processing114General viewer114Scientific viewer115	Introduction	101
Data storage108Updated database structure108Database content109Improvements in data analysis. VMS interpolation111Sampling biological calculations111Data processing111Data visualization114General viewer114Scientific viewer115	Data input Purse seine on-board sampling Common octopus fishery Sampling GPS data Bottom trawling fishery Purse seine and sand eel fishery Common octopus (Octopus vulgaris) fishery External data: keeping updated Other projects	102 103 103 103 103 103 105 106 106
Data processing111Data visualization114General viewer114Scientific viewer115	Data storage Updated database structure Database content Improvements in data analysis. VMS interpolation Sampling biological calculations	108 108 109 111 111
Data visualization114General viewer114Scientific viewer115	Data processing	111
	Data visualization General viewer Scientific viewer	114 114 115

SECTION 3: Temporal persistence and spatial differentiation of the bottom trawling fishery métiers 119

	Introduction	121
	Métiers identification by port Species composition	122 125
	Temporal persistence by zone and <i>métier</i> Vessel Length composition Number of vessels	125 127 128
	Spatial differentiation using VMS data	132
	Main results and next steps	137
	References	139
A	NNEXES	143
	Annex 1: Catch composition for bottom trawling	145
	Annex 2: Statistical analysis results for bottom trawling métiers by port	159
	Annex 3: Species composition and landings by port and by métier	167
	Annex 4: Monthly size-frequency distribution for 2021	183

Index of figures and tables

Figure 1. Fisheries monitoring sampling conducted in Catalonia in 2021.	24
Figure 2. Bottom trawling hauls conducted in Catalonia in 2021.	31
Figure 3. Catch composition for Catalonia.	32
Figure 4. Species with most biomass landed including all hauls in each year.	32
Figure 5. Species with most biomass discarded including all hauls in each year.	33
Figure 6. Cathegories with higher biomass debris including all hauls in each year.	33
Figure 7. Catch composition for Catalonia.	34
Figure 8. Species with most biomass landed.	35
Figure 9. Species with most biomass discarded.	37
Figure 10. Cathegories with higher mass debris.	38
Figure 11. Spatial distribution of fishing effort.	39
Figure 12. Spatial distribution of landings.	40
Figure 13. Spatial distribution of revenues per unit of effort.	40
Figure 14. Spatial distribution of Hake landings.	42
Figure 15. Annual length-frequency distribution of Hake.	43
Figure 16. Hake monthly gonadal cycle.	44
Figure 17. Spatial distribution of Norway lobster landings.	45
Figure 18. Annual length-frequency distribution of Norway lobster.	46
Figure 19. Norway lobster monthly gonadal cycle for females.	47
Figure 20. Spatial distribution of Blue and red shrimp landings.	48
Figure 21. Annual length-frequency distribution of Blue and red shrimp.	49
Figure 22. Blue and red shrimp monthly gonadal cycle for females.	50
Figure 24. Annual weight-frequency distribution of Horned octopus at different depth strata.	52
Figure 25. Horned octopus monthly gonadal cycle for females and males.	53
Figure 26. Spatial distribution of Spottail mantis shrimp landings.	54
Figure 27. Annual length-frequency distribution of Spottail mantis shrimp.	55
Figure 28. Spottail mantis shrimp monthly gonadal cycle for females.	56
Figure 29. Spatial distribution of Caramote prawn.	57
Figure 30. Annual length-frequency distribution of Caramote prawn at different depth strata.	58
Figure 32. Roses catch composition.	62
Figure 33. Roses species with most biomass landed in 2021.	62
Figure 34. Roses species with most biomass discarded in 2021.	62
Figure 35. Roses cathegories with higher mass debris in 2021.	62
Figure 31. Roses sampling trawls in 2021.	62
Figure 37. Palamós catch composition.	64
Figure 38. Palamós species with most biomass landed in 2021.	64
Figure 39. Palamós species with most biomass discarded in 2021.	64
Figure 40. Palamós cathegories with higher mass debris in 2021.	64
Figure 36. Palamós sampling trawls in 2021.	64

Figure 42. Blanes catch composition.	66
Figure 43. Blanes species with most biomass landed in 2021.	66
Figure 44. Blanes species with most biomass discarded in 2021.	66
Figure 45. Blanes cathegories with higher mass debris in 2021.	66
Figure 41. Blanes sampling trawls in 2021.	66
Figure 47. Arenys de Mar catch composition.	68
Figure 48. Arenys de Mar species with most biomass landed in 2021.	68
Figure 49. Arenys de Mar species with most biomass discarded in 2021.	68
Figure 50. Arenys de Mar cathegories with higher mass debris in 2021.	68
Figure 46. Arenys de Mar sampling trawls in 2021.	68
Figure 52. Barcelona catch composition.	70
Figure 53. Barcelona species with most biomass landed in 2021.	70
Figure 54. Barcelona species with most biomass discarded in 2021.	70
Figure 55. Barcelona cathegories with higher mass debris in 2021.	70
Figure 51. Barcelona sampling trawls in 2021.	70
Figure 57. Vilanova i la Geltrú catch composition.	72
Figure 58. Vilanova i la Geltrú species with most biomass landed in 2021.	72
Figure 59. Vilanova i la Geltrú species with most biomass discarded in 2021.	72
Figure 60. Vilanova i la Geltrú cathegories with higher mass debris in 2021.	72
Figure 56. Vilanova i la Geltrú sampling trawls in 2021.	72
Figure 62. Tarragona catch composition.	74
Figure 63. Tarragona species with most biomass landed in 2021.	74
Figure 64. Tarragona species with most biomass discarded in 2021.	74
Figure 65. Tarragona cathegories with higher mass debris in 2021.	74
Figure 61. Tarragona sampling trawls in 2021.	74
Figure 67. L'Ametlla de Mar catch composition.	76
Figure 68. L'Ametlla de Mar species with most biomass landed in 2021.	76
Figure 69. L'Ametlla de Mar species with most biomass discarded in 2021.	76
Figure 70. L'Ametlla de Mar cathegories with higher mass debris in 2021.	76
Figure 66. L'Ametlla de Mar sampling trawls in 2021.	76
Figure 72. La Ràpita catch composition.	78
Figure 73. La Ràpita species with most biomass landed in 2021.	78
Figure 74. La Ràpita species with most biomass discarded in 2021.	78
Figure 75. La Ràpita cathegories with higher mass debris in 2021.	78
Figure 71. La Ràpita sampling trawls in 2021.	78
Figure 76. Purse seine fishing sampling conducted in Catalonia in 2021.	82
Figure 77. Spatial distribution of European sardine landings.	83
Figure 78. Annual length-frequency distribution of European sardine.	84
Figure 79. European sardine monthly gonadal cycle for females and males.	84
· - ·	

Figure 80. Spatial distribution of Anchovy landings.	85
Figure 81. Annual length-frequency distribution of Anchovy at different depth strata.	86
Figure 82. Anchovy monthly gonadal cycle for females and males.	86
Figure 83. Sand eel samplings in 2021.	88
Figure 84. Sand eel fishery catch composition and species with most biomass discarded.	89
Figure 85. Annual length-frequency distribution of mediterranean sand eel.	89
Figure 86. Mediterranean sand eel monthly gonadal cycle for females and males.	90
Figure 87. Annual length-frequency distribution of mediterranean sand eel.	91
Figure 88. Smooth sand eel monthly gonadal cycle for females and males.	91
Figure 89. Annual length-frequency distribution of Transparent goby.	92
Figure 90. Transparent goby monthly gonadal cycle for females and males.	92
Figure 91. Common octopus sampling in 2021.	93
Figure 92. Annual weight-frequency distribution of Common octopus.	94
Figure 93. Common octopus monthly gonadal cycle for females and males.	94
Figure 94. Annual weight-frequency distribution of Common octopus.	95
Figure 95. Common octopus monthly gonadal cycle for females and males.	96
Figure 96. Annual weight-frequency distribution of Common octopus.	96
Figure 97. Common octopus monthly gonadal cycle for females and males.	97
Figure 98. Workflow for ICATMAR data input, storage and exploitation.	101
Figure 99. Example of a purse seine on-board sampling.	102
Figure 100. Example of bottom trawling sampling GPS.	104
Figure 101. Example of purse seine sampling GPS.	104
Figure 102. Example of pots/traps sampling GPS.	105
Figure 103. Database model.	108
Figure 104. Amount of records of the fishing sampling data stored in the database.	109
Figure 105. Amount of records some external data in the database.	110
Figure 106. Comparison between raw and interpolated VMS data treatment.	112
Figure 107. Structure of ICATMAR dynamic visualization systems.	114
Figure 108. Sampling catch composition between areas and ports.	115
Figure 110. Layer exploring page of ICATMAR's scientific viewer.	116
Figure 111. Map exploring page of ICATMAR's scientific viewer.	117
Figure 112. PCA shows the trips grouped by month for all the ports.	123
Figure 113. PCA represents the trips grouped by month for all the ports.	123
Figure 114. Residuals distribution and adjusted data for bottom trawler métiers.	124
Figure 115. Most important species for the four métiers of the north zone.	125
Figure 116. Most important species for the four métiers of the central zone.	126
Figure 117. Most important species for the four métiers of the south zone.	126
Figure 118. Vessel length composition for the OTB fleet in the North zone.	127

Figure 119. Vessel length composition for the OTB fleet in the Center zone.	128
Figure 120. Vessel length composition for the OTB fleet in the South zone.	129
Figure 121. Mean number of different vessels fishing on each métier.	130
Figure 122. Changes in Landing Per Unit Effort (LPUE) in each métier.	131
Figure 123. Spatial distribution of otter trawl fishery VMS.	132
Figure 124. Spatial distribution of coastal shelf metiers trawl otter fishery VMS.	133
Figure 125. Spatial distribution of deeper shelf metiers trawl otter fishery VMS.	134
Figure 126. Spatial distribution of upper slope (north and central coast) metiers VMS.	135
Figure 127. Spatial distribution of lower slope (north and central coast) metiers VMS.	136
Figure 128. Residual distribution and adjusted data: Llancà; Port de la Selva; Palamós.	160
Figure 129. Residual distribution and adjusted data: Roses; Blanes; Arenys de Mar.	161
Figure 130. Residual distribution and adjusted data: Barcelona; Vilanova i la Geltrú; Tarragona.	162
Figure 131. Residual distribution and adjusted data: Cambrils; L'Ametlla de Mar; L'Ampolla.	163
Figure 132. Residual distribution and adjusted data: La Ràpita; Les Cases d'Alcanar.	164
Figure 135. Monthly length-frequency distribution of Hake (Jan-Jun 2021).	184
Figure 136. Monthly length-frequency distribution of Hake (Jul to Dec 2021).	185
Figure 137. Monthly length-frequency distribution of Norway lobster (Jan-Jun 2021).	186
Figure 138. Monthly length-frequency distribution of Norway lobster (Jul to Dec 2021).	187
Figure 139. Monthly length-frequency distribution of Blue and red shrimp (Jan-Jun 2021).	188
Figure 140. Monthly length-frequency distribution of Blue and red shrimp (Jul to Dec 2021).	189
Figure 141. Monthly weight-frequency distribution of Horned octopus (Jan-Jun 2021).	190
Figure 142. Monthly weight-frequency distribution of Horned octopus (Jul to Dec 2021).	191
Figure 143. Monthly length-frequency distribution of Spottail mantis shrimp (Jan-Jun 2021).	192
Figure 144. Monthly length-frequency distribution of Spottail mantis shrimp (Jul to Dec 2021).	193
Figure 145. Monthly length-frequency distribution of Caramote prawn (Jan-Jun 2021).	194
Figure 146. Monthly length-frequency distribution of Caramote prawn (Jul to Dec 2021).	195
Figure 147. Monthly length-frequency distribution of European sardine from 2021.	196
Figure 148. Monthly length-frequency distribution of Anchovy from 2021.	197
Figure 149. Monthly length-frequency distribution of Mediterranean sand eel from 2021.	198
Figure 150. Monthly length-frequency distribution of Smooth sand eel from 2021.	199
Figure 151. Monthly weight-frequency distribution of Common octopus (Jan-Jun 2021).	200
Figure 152. Monthly weight-frequency distribution of Common octopus (Jul to Dec 2021).	201
Table 1. Classification of marine litter.	26
Table 2. Hake length-weight relationship parameters in 2021.	42
Table 3. Norway lobster length-weight relationship parameters in 2021.	45

Table 4. Blue and red shrimp length-weight relationship parameters in 2021.48Table 5. Horned octopus length-weight relationship parameters in 2021.51

Table 6. Spottail mantis shrimp length-weight relationship parameters in 2021.	54
Table 7 Caramote prawn length-weight relationship parameters in 2021.	57
Table 8 European sardine length-weight relationship parameters in 2021.	83
Table 9 Anchovy length-weight relationship parameters in 2021.	85
Table 10. Mediterranean sand eel length-weight relationship parameters in 2021.	90
Table 11. Smooth sand eel length-weight relationship parameters in 2021.	91
Table 12. Transparent goby length-weight relationship parameters in 2021.	92
Table 13. Métier codes and names for each zone.	122
Table 14. ANOVA test results for bottom trawler métiers.	124
Table 15. Landed species with higher biomass for 2019. SE: standard error.	146
Table 16. Landed species with higher abundance for 2019. SE: standard error.	147
Table 17. Discarded species with higher biomass for 2019. SE: standard error.	148
Table 18. Items from the debris fraction with higher mass for 2019. SE: standard error.	149
Table 19. Landed species with higher biomass for 2020. SE: standard error.	150
Table 20. Landed species with higher abundance for 2020. SE: standard error.	151
Table 21. Discarded species with higher biomass for 2020. SE: standard error.	152
Table 22. Items from the debris fraction with higher mass for 2020. SE: standard error.	153
Table 23. Landed species with higher biomass for 2021. SE: standard error.	154
Table 24. Landed species with higher abundance for 2021. SE: standard error.	155
Table 25. Discarded species with higher biomass for 2021. SE: standard error.	156
Table 26. Items from the debris fraction with higher mass for 2021. SE: standard error.	157
Table 27. Statistical analysis results for bottom trawler métiers by port (Part I).	165
Table 28. Statistical analysis results for bottom trawler métiers by port (Part II).	166
Table 29. Species composition and landings (in kg) by <i>métier</i> for Llançà	168
Table 30. Species composition and landings (in kg) by <i>métier</i> for Port de la Selva.	169
Table 31. Species composition and landings (in kg) by <i>métier</i> for Roses.	170
Table 32. Species composition and landings (in kg) by <i>métier</i> for Palamós.	171
Table 33. Species composition and landings (in kg) by <i>métier</i> for Blanes.	172
Table 34. Species composition and landings (in kg) by <i>métier</i> for Arenys de Mar.	173
Table 35. Species composition and landings (in kg) by <i>métier</i> for Barcelona.	174
Table 36. Species composition and landings (in kg) by <i>métier</i> for Tarragona.	175
Table 37. Species composition and landings (in kg) by <i>métier</i> for Vilanova i la Geltrú.	176
Table 38. Species composition and landings (in kg) by <i>métier</i> for Cambrils.	177
Table 39. Species composition and landings (in kg) by <i>métier</i> for L'Ametlla de Mar.	178
Table 40. Species composition and landings (in kg) by <i>métier</i> for L'Ampolla.	179
Table 41. Species composition and landings (in kg) by <i>métier</i> for La Ràpita.	180
Table 42. Species composition and landings (in kg) by <i>métier</i> for Les Cases d'Alcanar.	181

Glossary

- **CL:** Cephalotorax Length
- **CPUE:** Catch Per Unit Effort
- GFCM: General Fisheries Commission for the Mediterranean
- **GSA:** Geographical Sub-Area
- **GSI:** gonadosomatic index
- **GT:** Gross Tonnage
- LF: Length Frequency
- LPUE: Landing Per Unit Effort
- MAP: Multi-Annual Plan
- MCRS: Minimum Conservation Reference Size
- MCRW: Minimum Conservation Reference Weight
- **OTB:** Bottom Otter Trawl
- PCA: Principal Component Analysis
- **PSA:** Productivity and Susceptibility Analysis
- **STECF:** Technical and Economic Committee for Fisheries
- TL: Total Length
- VL: Vessel Length
- VMS: Vessel Monitoring System
- WF: Weight Frequency
- WMS: Geoserver a Web Map Service

Executive summary

This report presents the state of fisheries in Catalonia in 2021. Section 1 describes the results of the monitoring of the commercial fishing fleet throughout the year, Section 2 describes the changes and updates made to the information systems and data analysis structures, and Section 3 analyzes the temporal and spatial structure of bottom trawling fishery *métiers* in Catalonia.

Section 1 - Biological and fishery monitoring

The sampling procedures varied depending on the species studied and the fishing gears used. The main results are reported by fishing modality and then categorized by species.

Bottom trawling

In 2021, 66% of the total catch corresponded to landed species, while 27% was discarded. Organic debris and marine litter represented 6% of the catch. A total of 339 different species were identified in our samples, 150 of them belonging to the commercial fraction of the catch and 306 to the discarded fraction - some species show up in both fractions. When analyzing the results by depth, the lower slope presented the highest percentage of landed catch (71%) whereas the continental shelf had the lowest (57%).

The commercial species monitored in bottom trawling were the hake (*Merluccius merluccius*), the Norway lobster (*Nephrops norvegicus*), the blue and red shrimp (*Aristeus antennatus*), the horned octopus (*Eledone cirrhosa*), the spottail mantis shrimp (*Squilla mantis*), and the caramote prawn (*Penaeus kerathurus*). Species distribution maps, length frequency distribution graphs, length-weight relationship parameters, and gonadal cycle graphs representing the gonadosomatic index (GSI) are presented for each species. The GSI values in crustaceans are only presented for females, since males present stable GSI values throughout the year.

Within the commercial species, each depth had a different composition, with *Squilla mantis*, *Trachurus trachurus*, *Phycis blennoides*, and *Aristeus antennatus* being the most abundant species in the shallow continental shelf, continental shelf, upper slope and lower slope, respectively. As for the discarded species, *Engraulis encrasicolus* and *Leptometra phalangium* were the most abundant species in the shallow continental shelf and continental shelf, respectively. In both slopes, the most abundant discarded species was *Scyliorhinus canicula*. Considering the debris fraction, the most abundant elements had a terrestrial origin in all depths.

Data on catch composition for the bottom trawling fishery are presented by port for the 9 ports sampled: Roses, Palamós, Blanes, Arenys de Mar, Barcelona, Vilanova i la Geltrú, Tarragona, L'Ametlla de Mar, and La Ràpita.

Purse seine fishing

A total of 76 samplings were carried out for purse seine fishing in 2021. Both target species - the European sardine (*Sardina pilchardus*) and the anchovy (*Engraulis encrasicolus*) - presented no variations in their length frequency distributions throughout the years studied (2019 to 2021). For the European sardine, in 2021 there was a larger proportion of caught individuals below the size at first maturity, defined at 10.5 cm by the latest study available in our area (Albo et al. 2021), and also below the minimum conservation reference size (MCRS), established at 11 cm, representing immature and small-sized individuals that had not yet bred. For the anchovy, this is observed in 2020 (size at first maturity is 9.6 cm according to Albo et al. 2021, while MCRS is 9 cm).

Species distribution maps, length frequency distribution graphs, length-weight relationship parameters, and gonadal cycle graphs representing the gonadosomatic index (GSI) are presented for each species. The reproductive period of the European sardine was observed from October to April, with a peak in December for both sexes. For anchovy, the reproductive period was observed from April to October, with a peak from May to July for both sexes.

Small-scale fisheries

The monitoring of small-scale fisheries includes the sand eel fishery, which focuses on the Mediterranean sand eel (*Gymnammodytes cicerelus*), the smooth sand eel (*Gymnammodytes semisquamatus*), and the transparent goby (*Aphia minuta*), and the common octopus fishery, which targets *Octopus vulgaris* with both pots and traps. The sand eel fishery is the subject of a co-management plan, in place since 2014. The common octopus fishery is also co-managed in two different areas of the territory: Central Catalonia and the Ebre Delta. Results are presented for all of Catalonia and then by zone.

Section 2 - Information systems and data analysis

The main technologies used and conceptualization of ICATMAR information systems have been described in previous reports (ICATMAR, 2021-02). The present report refers only to the last upgrades implemented. The changes affect data input, storage, processing, and visualization.

Data input

A system has been developed to allow data input autonomously by each sampler, implementing automatic data checks to reduce errors in data stored in databases and perform automatic calculations to ease the data analysis. In all samplings on board and in the laboratory, data are collected in sampling forms and entered in the data input website in order to centralize information, improve quality, relate data concepts and perform their corresponding calculations. Updates to the website and database have been implemented to allow for data entry from fishing modalities other than bottom trawling, i.e. purse seine and small-scale fisheries.

The sampling data entered into the database through the input website are combined with different sets of external data, i.e Vessel Monitoring System (VMS) geolocation data, landings data, and fleet register datasets. The database and input website have also been adapted to host data from other projects besides our commercial fishing fleet monitoring program, such as studies on fishing gear selectivity or data collection for co-management plans.

Data storage

The data check protocols and structure have been adapted to the different fishing gears used. The current database contents include 941 fishing hauls, 2 800 positions, and 270 000 specimens measured.

Data processing

Different procedures have improved the data analysis. First, VMS data are now interpolated by means of a Cubic Hermite Spline interpolation method developed by Russo et al. (2011), using vmsBase R package (Russo et al., 2014). Then, standardization and extrapolation of the data has been made easier by implementing a number of automatic calculations directly into the data input website, including frequency (in number of individuals, ind.), abundance (ind./km2), total weight (g), and biomass (kg/km2).

Data visualization

As for data visualization, the output for geographic products, charts and tables has been automated using QGIS and R directly connected to the database. More data visualization products include a web architecture, which has been designed to improve the scientific knowledge transfer to different stakeholders. A new website will be developed to provide information on the institution, services, team, publishing reports, and related news. The new website will also host two data viewers, one intended for the general public and one geared towards the scientific community. The general viewer aims to provide access to all stakeholders publicly. There is currently a prototype developed in collaboration with Xarxa Maritima de Catalunya containing the sampling data for trawling fisheries. The scientific viewer aims to give access to all available ICATMAR datasets, either geographic or not, to a variety of users with previously approved authorisation. The system allows publishing layers stored in ICATMAR databases or static datasets, each layer containing its metadata, specific styles and attributes. The technologies used will be Geoserver and Geonode, a Django based website that allows users management.

Section 3 - Temporal persistence and spatial differentiation of the bottom trawling fishery *métiers*

This section focuses on five species that are subject to management measures and periodically evaluated in the geographical subarea 6 (GSA 6, NW Mediterranean, as defined by the General Fisheries Commission for the Mediterranean): the hake (*Merluccius merluccius*), the red mullet (*Mullus barbatus*), the blue and red shrimp (*Aristeus antennatus*), the Norway lobster (*Nephrops norvegicus*), and the deep-water red shrimp (*Parapenaeus longirostris*). The analysis is conducted following the four distinct bathymetric ranges of the Catalan coast (northern half of the GSA06): the coastal shelf (25–100 m), the deep shelf (101–200 m), the upper slope (201–500 m), and the lower slope (501–800 m).

To account for heterogeneity in fishing practices, the European Common Fisheries Policy recognizes the importance of a métier-based sampling. A *métier* is defined as a group of fishing operations that aim for a similar group of species using similar fishing gear during the same period and / or in the same area and with a similar pattern of exploitation. Then, considering the characteristics of the NW Mediterranean trawl fishery, and the current legislative framework, two main objectives have been defined for the present work:

- Define a protocol to identify *métiers* along with their temporal and geographical evolution;
- Characterize the bottom otter trawl (OTB) fleet by *métier* considering four facts: main target species, by-catch harvested community, temporal persistence, and spatial deployment.

Métiers identification by port

A PCA analysis indicates that 45% of the variability is caused by the species composition of the catch, which determines a difference between the composition of the shelf *métiers* (OTB1, OTB1A, OTB1B, OTB2, OTB2A, OTB2B) and the slope métiers (OTB3, OTB4). The ports from the north and the center of the Catalan coast present two shelf *métiers* (OTB1- OTB2) and two slope *métiers* (OTB3-OTB4) whereas most ports from the south zone present four shelf *métiers*, two from coastal shelf (OTB1A, OTB1B) and two from deep shelf (OTB2A, OTB2B).

When studying the species that drive the different métiers, several differences were observed. For example, the red shrimp was the only species highlighted in the PCA analysis for the lower slope *métier* (OTB4). Moreover, métiers varied among them and among years, but not among the interaction *métiers* and years, indicating a *métier* consistency during the time series.

Temporal persistence by port and by métier

The species composition of each *métier* varied very slightly according to zones. For example, the species that were landed the most on the north, central and south coastal shelves was the red mullet (*Mullus* spp.).

The amount of trips made by fishing vessels grouped in different Vessel Length (VL) categories in each *métier* varied according to zone. As an example, VL from 18 to 40 m accumulated most fishing trips in the north whereas in the center and south most trips were done by 12-18 m VL.

The number of vessels fishing in each *métier* decreased throughout time, which aligns with the reduction in the Catalan trawler fleet in the last 20 years, where the total number of vessels decreased by 42% since 2000.

There were changes in Landing Per Unit Effort (LPUE) in each *métier* throughout the time series (2002-2021). For example, platform *métiers* (OTB1, OTB2, OTB1A, OTB1B, OTB2A and OTB2B) had a higher LPUE than upper and lower slope *métiers* (OTB3 and OTB4).

Spatial differentiation by métiers using VMS data

VMS data was used to spatially differentiate the fishing ground of each *métier* at the port level.

SECTION 1 Biological and fishery monitoring

1.1

Introduction

The Mediterranean Sea is an area with long-established oceanographic and fishing traditions. The exploitation of marine living resources started thousands of years ago becoming an area of observations and descriptions in which fishing has always been of main importance (Margalef, 1989). Within the Mediterranean Sea, fisheries activities are deeply rooted in the Catalan culture and have historically been the main source of income and identity for its coastal communities. However, to ensure future provision of marine resources, there's a need to develop science-based management strategies and implement monitoring programs. For this purpose, the Catalan Research Institute for the Governance of the Sea (ICATMAR) was created in Catalonia in 2018 as a cooperation body between the General Directorate of Fisheries and Maritime Affairs and the Institute of Marine Sciences (ICM-CSIC). Its aim is to develop the program of the Maritime Strategy of Catalonia, which bases the governance of the maritime policies of the territory on scientific data, long-term monitoring, and the model of co-management.

State of fisheries in Catalonia 2021, Part 1

Method

Based on their importance in terms of catch and economic value, the target species of the biological sampling are hake (*Merluccius merluccius*), Norway lobster (*Nephrops norvegicus*), blue and red shrimp (*Aristeus antennatus*), horned octopus (*Eledone cirrhosa*), spottail mantis shrimp (*Squilla mantis*), caramote prawn (*Penaeus kerathurus*), common octopus (*Octopus vulgaris*), European pilchard (*Sardina pilchardus*), European anchovy (*Engraulis encrasicolus*) and the sand eels (as it is mandatory to monitor them within the framework of the "sonsera" Management Plan) including Mediterranean sand eel (*Gymnammodytes cicerelus*), smooth sand eel (*G. semisquamatus*) and transparent goby (*Aphia minuta*).

The sampling procedures varied depending on the species studied and the fishing modality used to catch them. An overview of the total sampling trips in the three fishing modalities during the year 2021 is shown in Figure 1.

Figure 1. Fisheries monitoring sampling conducted in Catalonia in 2021.

Bottom trawling sampling

For bottom trawlers, sampling was done through experimental hauls at different depths, in fishing grounds defined by high-fishing effort areas (Sala-Coromina et al., in prep.).

Sampling was carried out from 9 main commercial ports, with a quarterly frequency per port. The division of the study area in 3 zones (North, Center and Ebre Delta) is made according to both hydrographic and geomorphological traits of the continental shelf (Clavel-Henry et al., 2021). The ports of the zones where the sampling took place are:

- North zone: Roses, Palamós, Blanes, and Arenys de Mar.
- Center zone: Barcelona, Vilanova i la Geltrú and Tarragona.
- Ebre Delta zone: L'Ametlla de Mar and La Ràpita (formerly Sant Carles de la Ràpita).

Each sampling day includes three experimental hauls on board of the same vessel, each one at a different depth range. Each haul is GPS-recorded with a start and end point, fishing time and gear width. These measurements allow the calculation of the swept area to standardize species biomass and abundance values. The sampled depth ranges for the Northern and Central zones and their corresponding most common target species are:

- Continental shelf (76 200 m): hake, horned octopus, caramote prawn and spottail mantis shrimp.
- Upper slope (201 500 m): Norway lobster, hake and horned octopus.
- Lower slope (501 800 m): blue and red shrimp.

However, for the Ebre Delta zone the sampled depth differs due to the distinct geomorphological structure of the Ebre Delta, where commercial fishing activity takes place exclusively in the wide continental shelf, and thus requires a more detailed sampling of this area. The sampled depth ranges for the Ebre Delta zone and their most common corresponding target species are:

- Shallow continental shelf (<40 m): spottail mantis shrimp and caramote prawn.
- Middle continental shelf (40 75 m): spottail mantis shrimp and hake.
- Continental shelf (76 200 m): spottail mantis shrimp and hake.

For the analysis of length and weight frequency distributions (LF and WF, respectively) of the target species, the shallow and middle continental shelves of the Ebre Delta zone have been unified under the name of shallow continental shelf and cover a depth range from <40 – 75 m.

Average depth for each haul is then estimated by calculating an average point between the start and end points of each haul. Mesh size is 40-mm square for all hauls except in Palamós lower slope, where the co-management measures for the blue and red shrimp fishery require a 50-mm squared mesh.

On board, the fishermen sort the catch into two categories: commercial, i.e. individuals of commercial species to be sold in the fish auction, and discard, which can include individuals of non-commercial species and/or undersized or damaged individuals of commercial species, as well as marine litter and natural debris. Fish, crustacean and cephalopod individuals of the commercial fraction are identified and measured on board (total length, cephalothorax length and mantle length, respectively). For the target species, a subsample of a little over 30 individuals is preserved in coolers to transport to the laboratory. As for the discard fraction, either the total sample or a subsample – depending on the total size of the catch – is preserved in coolers and transported to the laboratory for further analysis. The process is repeated for each of the three hauls.

Once in the laboratory, at the ICM-CSIC, the target species individuals were measured, sexed and weighed individually, their reproductive stage was assessed and their gonads weighed.

Debris definition and composition

The samples used to characterize and analyze the debris and its composition, were obtained from the discard fraction gathered during the bottom trawling sampling.

The term debris includes two different types of items. On one side, the non-organic materials caught during fishing operations, also known as marine litter and, on the other, organic materials with terrestrial and marine origin such as shells, algae and plants. Debris have been classified following (REGULATION (EU) 2022/92) (Table 1).

For the analysis and plots of the debris, the categories analyzed were the 10 with the highest weight and representing over 2% of the total catch.

Category	Subcategory	Description
Metal	Metal	Items or pieces made with metal, i.e. cans, lids
Plastic	Fishing gear	Plastic fishing related items, i.e. nets, buoys, line
	Plastic	Items or pieces made with plastic, i.e. bags, containers
	Sanitary waste	Personal hygiene and health related items, i.e. face masks, gloves, tampons, blisters
	Wet wipes	Single use moistened pieces of non-woven fabric
Rubber	Rubber	Items or pieces made with rubber, i.e. ballons, boots, tyres
Textile	Textiles	Clothes and pieces of fabric
Wood	Wood	Items and pieces made with wood, i.e. corks, boxes or poles
Other waste	Clinker	Burned coal from steam ships
	Glass	Items or pieces made with glass, i.e. cups, jars
	Unclassified waste	All other marine litter which does not fit in the specific categories

Table 1. Classification of marine litter.

Purse seine fishing sampling

For the purse seine fishing, sampling was done through the acquisition of batches of European pilchard and European anchovy. A defined quantity of the catch was bought directly at the sampled port market, therefore, the fishing trips were not experimental but strictly planned by the vessel skippers according to their own interests.

Batches were purchased from 7 main commercial ports: L'Escala, Palamós, Blanes, Arenys de Mar, Barcelona, Vilanova i la Geltrú and Tarragona. No batches were acquired in the Ebre Delta zone since no significant catch of these species lands in ports south of Tarragona.

One batch from the port of l'Escala and one from the port of Tarragona were purchased on a monthly basis and one or two additional batches from other ports. Data on the batch origin (vessel, catch coordinates and total catch) were gathered at the fish market or from the fisherman who provided it.

Once in the laboratory, at the ICM-CSIC, all the individuals from a subsample of approximately 3 kg from each of the target species - when both were available - were measured to the nearest 0.5 cm and classified by size categories to obtain size frequencies. Then, 30 individuals from each species, distributed by all size categories, were measured and weighed individually, their reproductive state was assessed and their gonads weighed. If discard species were present in the batches, they were identified and their individuals measured and weighted.

Small-scale fisheries sampling

Small-scale fisheries samplings include the sand eel fishery and the common octopus fishery.

Sand eel fishery sampling

For the sand eel fishery, sampling was carried out on board boat seine ("sonsera") fishing vessels where biological batches were obtained. As in the purse seine fishing sampling, the fishing trips were not experimental but strictly planned by the vessel skippers according to their own interests. During closure periods, one sampling per month was carried out to check the state of the population before the opening of the fishery.

Sampling for the Mediterranean and the smooth sand eel was carried out from the ports of l'Estartit, Sant Feliu de Guíxols, Palamós and Blanes, in the province of Girona, and from the port of Arenys de Mar, in the province of Barcelona. On the other hand, sampling for the transparent goby was carried out from the ports of Barcelona and Badalona.

Two monthly samplings were conducted where biological batches of 1 Kg of Mediterranean and smooth sand eel were obtained: one from the port of Arenys de Mar and the other from one of the ports in the province of Girona. Batches were preserved in coolers to transport to the laboratory. When transparent goby was available, two monthly batches of 1 Kg were obtained from the ports of Barcelona and Badalona (one from each location).

Once in the laboratory, at the ICM-CSIC, a random subsample of 100-200 individuals was classified by species (either Mediterranean or smooth sand eel), measured to the nearest 0.5 cm, and classified by size categories to obtain size frequencies. Then, 50 individuals, distributed by all size categories, were measured and weighed individually, and, for the ones with a length above 6 cm, their reproductive state was assessed. If discard species were present, they were identified and their individuals measured and weighted. For the transparent goby, the same protocol was followed.

Common octopus fishery sampling

For the common octopus fishery, sampling was carried out on board fishing vessels, using pots and traps as fishing gears, where biological batches were obtained. As in the purse seine fishing and the sand eel fishery sampling, the fishing trips were not experimental but strictly planned by the vessel skippers according to their own interests.

Sampling was carried out from five main ports, within the two zones that host a co-management plan for the species:

- Central Catalonia: Vilanova i la Geltrú.
- Ebre Delta: l'Ametlla de Mar, Deltebre and La Ràpita.

Six monthly samplings were conducted: four from the port of Vilanova i la Geltrú, two with pots and two with traps, and the other two alternating from the port of L'Ametlla de Mar, with traps, and the ports of Deltebre or La Ràpita, with pots. For every boarding, batches of up to 30 individuals of common octopus - above minimum conservation reference weight (MCRW), established at 1000 g - were obtained and preserved in coolers to transport to the laboratory. If more than 30 individuals were caught, the extra individuals were measured (mantle length), weighted and sexed in situ. All individuals below MCRW were weighed and sexed in situ and released back to the sea.

Once in the laboratory, at the ICM-CSIC, all individuals were measured, weighed, sexed and their reproductive state was assessed.

Calculations and data analysis

For each target species, we represented the annual length frequency (weight frequency in the case of Cephalopoda) by sampling strata, as well as the monthly proportion of each maturation stage and monthly average value of gonadosomatic index (GSI). The length/weight frequency is only presented for the strata where each species is naturally present. GSI values in crustaceans are only presented for females, since males present stable GSI values throughout the year. A table with length-weight relationship parameters is provided for each species, using the relationship W = a^{TL^b} , where W is weight (g) and TL is total length (cm).

Although the present report is focused on the year 2021, data are in general presented for the years 2019, 2020, and 2021. This information is available in previous reports (ICATMAR 21-03, 19-01) but is presented again here in a unified format for clarity and ease of reference.

Bottom trawling

SECTION 1 Biological and fishery monitoring Bottom trawling fishery in Catalonia

A total of 118 bottom trawling sampling hauls were carried out in 2021: 14 in the shallow continental shelf, 34 in the continental shelf, 43 in the upper slope and 27 in the lower slope (Fig. 2). Exceptionally, no hauls were conducted in November due to weather inconvenience.

Figure 2. Bottom trawling hauls conducted in Catalonia in 2021.

We here present a general view of the catch composition of our sampling hauls in all Catalonia in 2021. For detailed tables on the catch composition at the lowest possible classification level, see Annex 1.

In 2020 and 2021 the commercial fraction of the catch was 66%, lower than in 2019 (Fig. 3). As for the discard fraction, considering all depth ranges together, it ranges between 23 and 27%.

Landed Discarded Debris

Figure 3. Catch composition for Catalonia. Percentage by weight of landings, discarded and debris fraction in each year including all hauls in all depths sampled.

The maximum number of species commercialized (without considering the discard) was found in 2019, with 164 different species (Fig. 4). At the level of Catalonia, the most important species were relatively constant over the years. It is worth noting the rise of *Parapenaeus longirostris* which, from 2020, became one of the most important crustacean catches and in 2021 it overtook the Norwav lobster and the blue and red shrimp.

Figure 4. Species with most biomass landed including all hauls in each year.

The most important species within the discard fraction was *Scyliorhinus canicula* (Fig. 5). Of particular note in 2020 and 2021 was the presence of the crinoid *Leptometra phalangium*, which accounted for more than 10% of the biomass discarded. The presence of *P. heterocarpus* was also notable in 2020 with 4% of the biomass discarded. The proportion of commercial species in bottom trawling was more than 70% in number of species.

Figure 5. Species with most biomass discarded including all hauls in each year.

As for debris, the overall results were similar for all years, although a high proportion of wet wipes in 2020 is noteworthy (Fig. 6). Much of the waste was natural, including terrestrial plants, marine plants, shells or other marine organic debris. Regarding anthropogenic waste, plastic

Figure 6. Cathegories with higher biomass debris including all hauls in each year.

was one of the most prevalent, along with lumber and coal, also known as clinker, the residual of burned coal from steamships that sailed the Mediterranean Sea in the 19th and 20th centuries.

The proportion of discard was similar for all years at all depth ranges (Fig. 7). Likewise, for all three years, the proportion of discard decreased with depth with the minimum found at the lower slope. It is worth noting that in 2020 the proportion of debris was slightly higher than in 2019 and 2021, possibly because it was a year with a high frequency of storms, including "Glo-

Figure 7. Catch composition for Catalonia. Percentage by weight of landings, discarded and debris fraction in each season and each fishing ground including all hauls in all ports sampled.

Others

Trachurus mediterraneus (Tmed) Pagellus erythrinus (Pery) Sphyraena sphyraena (Ssph) Merluccius merluccius (Mmer) Mullus barbatus (Mbar) Trisopterus capelanus (Tcap) Scomber colias (Scol) Trachurus trachurus (Ttra) Lophius budegassa (Lbud) Trachurus picturatus (Tpic) Phycis blennoides (Pble) Micromesistius poutassou (Mpou) Lophius piscatorius (Lpis) Lepidorhombus boscii (Lbos) Sparus aurata (Saur) Scomber scombrus (Ssco) Mullus surmuletus (Msur) Boops boops (Bboo) Helicolenus dactylopterus (Hdac) Scyliorhinus canicula (Scan) Galeus melastomus (Gmel) Squilla mantis (Sman) Nephrops norvegicus (Nnor) Parapenaeus longirostris (Plon) Aristeus antennatus (Aant) Pasiphaea multidentata (Pmul) Liocarcinus depurator (Ldep) Paromola cuvieri (Pcuv) Illex coindetii (Icoi) Eledone cirrhosa (Ecir)

Figure 8. Species with most biomass landed. Percentage in weight including all hauls within each year and depth strata. ria" which considerably increased the input of terrestrial waste into the sea via runoff water and gullies.

On the shallow continental shelf the main species was the spottail mantis shrimp (Fig. 8). It is noteworthy the high diversity of fish species on this depth range, accounting for a significant proportion of the catch.

The highest number of commercial species were caught on the continental shelf, *Trachurus trachurus* being the main species. However, it has to be considered that in the case of species with gregarious behavior, such as *T. trachurus*, biomasses might be overestimated when calculating them by extrapolating the weight by swept area.

On the upper slope, the main commercial species was *Phycis blennoides*. As for the target species, the Norway lobster showed a decrease in its catches shifting from 20% in 2019 to 13% in 2021. On the other hand, *P. longirostris* showed an increase, shifting from 7% in 2019 to 12% in 2021.

On the lowest depth range, the lower slope, the blue and red shrimp was, by far, the most important species in terms of biomass landed. It accounted for a range from 39 to 50% of the commercial catch, being 2021 the year with the lowest biomass landed for the species.

On the shallow continental shelf, the European pilchard and the European anchovy were the main discard fish species, especially in 2021 when the two species together accounted for 55% of the total discard (Fig. 9). In 2020, *Sardinella aurita* stood out, accounting for 21% of the total discard.

On the continental shelf, *S. canicula* represented 23% of the total discard in 2019, followed by *B. boops* which accounted for 15%. Most invertebrates, which were a large part of the diversity of species found in this depth range, are in the "Others" category, as the biomass represented by each species is low. In 2020 and 2021, as observed in the overall figure for Catalonia (Fig. 5), *L. phalangium* accounted for 19 and 18% of the total discard, respectively. On the other hand, in 2020 *P. heterocarpus*, as also observed in Figure. 5, stood out for representing 6% of the total discard, given this species is not abundant in this depth range. The peak of biomass for this species is the result of a single day of fishing when a large amount of discard was caught, with *P. heterocarpus* alone accounting for a total of 583 Kg.

On the upper slope, the elasmobranch *S. canicula* was the main species, representing more than 50% of the total discard over the three years (51 - 62%), whereas on the lower slope, *G. melastomus*, together with *S. canicula*, also played an important role within the total discard.

If results are analyzed by year and by depth strata, they are highly variable (Fig. 10). However, in broad terms, wet wipes were found to be very abundant in 2020, both on the continental shelf and on the lower slope, where they accounted for 17 and 24% (by wet weight), respec-

Alcyonium palmatum (Apal) Leptometra phalangium (Lpha)

Trachurus picturatus (Tpic) Capros aper (Cape) Plesionika heterocarpus (Phet) Figure 9. Species with most biomass discarded. Percentage in weight including all hauls within each year and depth strata.

Hoplostethus mediterraneus (Hmed)

Macroramphosus scolopax (Msco)

Pagellus acarne (Paca)

Spicara maena (Smae)

Others

Trachurus trachurus (Ttra)

Diplodus annularis (Dann)

Merluccius merluccius (Mmer)

Spicara flexuosa (Sfle)

Chimaera monstrosa (Cmon)

Liocarcinus depurator (Ldep)

Etmopterus spinax (Espi)

Squilla mantis (Sman)

Figure 10. Cathegories with higher mass debris. Percentage in weight including all hauls within each year and depth strata.

Figures 11, 12 and 13 show the spatial representation of fishing effort, total catches, and revenues by fishing effort for the bottom trawling fleet in 2021.

The spatial distribution of fishing effort (h/km^2) , catch (kg), and revenues per unit effort $(\in/h\cdot km^2)$ is presented in Figures 11, 12, and 13 for the years 2018 to 2021. Fishing effort is generally focused on submarine canyons in the North and Center zones, with more emphasis in the shallow continental slope in the Ebre Delta. Total catch is concentrated around the shallower waters of the Ebre Delta and along the Center zone, while the revenue per unit effort is higher in the northernmost parts of the studied area, with similar values near the shelf break of the Ebre Delta as well.

Figure 11. Spatial distribution of fishing effort (h/km²)

Figure 12. Spatial distribution of landings (kg)

SECTION 1

Bottom trawling by species

Hake (*Merluccius merluccius*) HKE

The total hake catch in Catalonia in 2021 was 646.32 t, over 94% of which was caught by bottom trawling (ICAT-MAR, 22-03).

The spatio-temporal length-frequency distribution of hake indicates that the species was more abundant in the continental shelf for all years, despite being also present in the shallow continental shelf, the upper slope and, with the lowest abundances, in the lower slope (Fig.15). In terms of catch size, a significant proportion of individuals, especially on both continental shelves, were caught below the minimum conservation reference size (MCRS) for the species, established at 20 cm.

The catch was dominated by smallsized individuals in both continental shelves for all years, corresponding to recruits of the species. However, in both upper and lower slopes, the catch was dominated by large-sized individuals, mostly caught above the MCRS.

Figure 14. Spatial distribution of Hake landings.

Table 2. Hake length-weight relationship parameters in 2021.

2021	а	b	R ²	n
Combined	0.0060	3.0606	0.9835	2 137
Females	0.0063	3.0469	0.9822	998
Males	0.0062	3.0458	0.9754	956

Figure 15. Annual length-frequency distribution of Hake at different depth strata (SCS; Shallow Continental Shelf, CS; Continental Shelf, US; Upper Slope and LS; Lower Slope) from 2019 to 2021 in Catalonia. Dashed red line indicates the MCRS (Minimum Conservation Reference Size). (n) total number of measured individuals.

When comparing between years, maximum abundances of hake recruits (<10 cm) were found in the continental shelf (2021) and shallow continental shelf (2020), suggesting an acceptable recruitment for the species or, at least, better than 2019 when hake recruits were poorly caught. Interestingly, the highest abundances of hake in the upper slope were observed in 2019, with a mode located around 30 cm, whereas in 2020 and 2021 hake abundances decreased and the mode moved towards smaller sizes.

According to length-weight relationship parameters for both sexes combined (Table 2), hake displayed a positive allometric growth (b > 3). Likewise, when applying the growth curves separately for males and females, both sexes exhibited positive allometric growth.

A total of 288 females and 415 males were biologically analyzed to study the gonadal cycle of hake for 2021 (Fig. 16). Males and females in advanced maturity and spawning stages (stages IV and V respectively) were present all year round in low proportion. The reproductive activity for females seemed to concentrate from late summer to late winter, when the highest number of spawners were detected, and from September to February in males. The proportion of individuals in resting stage (stage II) was high throughout the year, especially in females. Results of gonadosomatic index (GSI) showed higher values for females in winter and summer months, with two peaks in March and September respectively, whereas the lowest values were recorded during the spring months. Likewise, males displayed maximum GSI values from September to February and minimum values during spring months. It is worth noting that GSI values present high variability throughout the year for both sexes, especially in females.

Figure 16. Hake monthly gonadal cycle for females and males. Gonadosomatic index (GSI +/-SD (Standard Deviation)) and percentage of different maturity stages.

Norway lobster (Nephrops norvegicus) NEP

The total Norway lobster catch in Catalonia in 2021 was 112.44 t, practically all of which were caught by bottom trawling (ICATMAR, 22-03).

The spatio-temporal length-frequency distribution of Norway lobster indicates that the species was more abundant (> 250 ind/km²) on the upper slope, reaching the maximum number of measured individuals in 2019 (Fig.18). The following years, its abundance slightly decreased (below 200 ind/km² in 2021). Comparing 2020 and 2021, the results were similar, although it is worth noting that in 2020 there were less samplings and data due to the COVID-19 pandemic. On the shallow continental and the continental shelves, the abundance was very low but most of the measured individuals were above the MCRS for the species, established at 20 mm.

Individuals on the upper and lower slopes showed a wider size distribution, ranging from 15 to 55 mm of cephalothorax length. On the upper Figure 17. Spatial distribution of Norway lobster landings.

Table	3.	Norway	lobster	length-weight	relationship	parameters	in
2021.							

2021	а	b	R ²	r
Combined	0.0004	3.1447	0.96	2112
Females	0.0005	3.1362	0.91	783
Males	0.0004	3.1884	0.97	1329

Figure 18. Annual length-frequency distribution of Norway lobster at different depth strata (SCS; Shallow Continental Shelf, CS; Continental Shelf, US; Upper Slope and LS; Lower Slope) from 2019 to 2021 in Catalonia. Dashed red line indicates the MCRS (Minimum Conservation Reference Size). (n) total number of measured individuals.

slope a higher abundance of individuals with a cephalothorax length of approximately 30 mm was observed over the three years. In 2021 on the lower slope, there was a slight increase in size, with a higher abundance of individuals with a cephalothorax length of around 33 mm. However, especially on the upper slope, a small proportion of the individuals caught were under the MCRS. According to length-weight relationship parameters for both sexes combined (Table 3), Norway lobster displayed a positive allometric growth (b > 3). Likewise, when applying the growth curves separately for males and females, both sexes exhibited positive allometric growth. Out of the measured individuals, there was a higher proportion of males which are larger in size and weight than females.

A total of 728 females were biologically analyzed to study the gonadal cycle of the Norway lobster for 2021 (Fig. 19). Females in mature state (stages IV) were present from March to October, showing a peak in the months of June and July. The reproductive activity seemed to concentrate in the months of July and August when the highest number of spawners were detected and high GSI values were found. The proportion of individuals in resting stage (stage II) was high in January and February and from October onwards. Results of gonadosomatic index (GSI) showed higher values from May to September, whereas the lowest values were recorded during the winter months. It is worth noting that GSI values presented high variability from July to October.

Figure 19. Norway lobster monthly gonadal cycle for females. Gonadosomatic index (GSI +/-SD (Standard Deviation)) and percentage of different maturity stages.

Blue and red shrimp (*Aristeus antennatus*) ARA

The total catch of blue and red shrimp in Catalonia in 2021 was 352.18 t, practically all of which were caught by bottom trawling (ICATMAR, 22-03).

No blue and red shrimp individuals were measured neither on the shallow continental nor the continental shelf strata given that there was no catch as the species inhabits the slope at deeper depths (Fig. 21).

The spatio-temporal length-frequency distribution of blue and red shrimp indicates that the species was more abundant on the lower slope, reaching its maximum in 2019. The following years its abundance slightly decreased, although it is worth noting that in 2020 there were less samplings and data due to the COVID-19 pandemic.

The length-frequency for all three years was similar for both the upper and lower slopes and, in general, it ranged between 16 and 63 mm of cephalothorax length. In 2021 on the lower slope, the mode slightly moved towards bigger sizes (29 mm).

Figure 20. Spatial distribution of Blue and red shrimp land-ings.

Table 4.	Blue	and	red	shrimp	lengt	h-weig	ht
relation	ship p	aram	neter	rs in 202	1.		

2021	а	b	R ²	n
Combined	0.0035	2.4178	1	2361
Females	0.0035	2.4146	1	2163
Males	0.011	2.0576	0.8	197

Figure 21. Annual length-frequency distribution of Blue and red shrimp at different depth strata (SCS; Shallow Continental Shelf, CS; Continental Shelf, US; Upper Slope and LS; Lower Slope) from 2019 to 2021 in Catalonia. (n) total number of measured individuals.

Even though there is no MCRS established for the species, the catch showed a considerable proportion of individuals under the size at first maturity (28 mm, female cephalothorax length),

According to length-weight relationship parameters for both sexes combined (Table 4), blue and red shrimp displayed a negative allometric growth (b < 3). Likewise, when applying the growth curves separately for males and females, both sexes exhibited negative allometric growth. In contrast with the Norway lobster, a higher proportion of females were measured which are larger in size and weight than males.

A total of 2080 females were biologically analyzed to study the gonadal cycle of the blue and red shrimp for 2021 (Fig. 22). Females showed a highly seasonal reproductive cycle. Females in mature state (stages IV) were present from May to September, showing a peak in the month of July. The reproductive activity seemed to concentrate in the months of July and August when the highest GSI values were found. From January to April and from October onwards, all individuals were in resting stage (stage II).

Figure 22. Blue and red shrimp monthly gonadal cycle for females. Gonadosomatic index (GSI +/-SD (Standard Deviation)) and percentage of different maturity stages.

Horned octopus (*Eledone cirrhosa*) EOI

The total horned octopus catch in Catalonia in 2021 was 298.71 t, over 97% of which were caught by bottom trawling (ICATMAR, 22-03).

The spatio-temporal weight-frequency distribution of horned octopus indicates that the species was more abundant on the continental shelf for all years, followed by the upper slope (Fig. 24). In contrast, this species was almost absent in the shallow continental shelf and the lower slope. The catch was dominated by individuals between 100 and 200 g on the continental shelf, and between 200 and 300 g on the upper slope for all years. When comparing between years, higher abundances of horned octopus were found between 2019 and 2020 in all depth strata, suggesting a decreasing trend of abundance.

According to length-weight relationship parameters for both sexes combined (Table 5), horned octopus displayed a negative allometric growth (b < 3). Likewise, when applying the growth curves separately for males and females, both sexes exhibited negative allometric growth.

Figure 23. Spatial distribution of Horned octopus landings.

Table 5. Horned octopus length-weight relationship parameters in 2021.

2021	a	b	R ²	n
Combined	0.6245	2.6694	0.9	576
Females	0.8727	2.5310	0.8	302
Males	0.5195	2.7436	0.8	262

Figure 24. Annual weight-frequency distribution of Horned octopus at different depth strata (SCS; Shallow Continental Shelf, CS; Continental Shelf, US; Upper Slope and LS; Lower Slope) from 2019 to 2021 in Catalonia. (n) total number of measured individuals.

A total of 258 females and 231 males were biologically analyzed to study the gonadal cycle of the horned octopus for 2021(Fig. 25). The species showed a spawning period during spring and early summer, as the highest proportion of mature and spawner specimens was found between April and June. Males showed an earlier maturation, with advanced mature individuals occurring in January. The lower proportion of spawner females may be caused by a faster senescence process after spawning than in males, which leads to an earlier death.

Figure 25. Horned octopus monthly gonadal cycle for females and males. Gonadosomatic index (GSI +/-SD (Standard Deviation)) and percentage of different maturity stages.

Spottail mantis shrimp (*Squilla mantis*) MTS

The total spottail mantis shrimp catch in Catalonia in 2021 was 372.97 t, over 95% of which was caught by bottom trawling (ICATMAR, 22-03).

No spottail mantis shrimp individuals were measured neither on the upper nor the lower slope strata, given that there was no catch as the species inhabits shallower depths (Fig. 27).

The spatio-temporal length-frequency distribution of spottail mantis shrimp indicates that the species was more abundant on the shallow continental shelf for all years.

The length-frequency distribution was similar on both the shallow continental and the continental shelf for all years, ranging from 8 to 38 mm of cephalothorax length with predominance of individuals around 25 mm of cephalothorax length. It is worth noting that in 2021 on the shallow continental shelf there was a higher abundance of larger individuals. On the other hand, on the continental shelf a bimodal length-frequency distribution was observed in 2020 and 2021, with peaks of abundance at 19 and 25 mm of cephalothorax length.

Figure 26. Spatial distribution of Spottail mantis shrimp landings.

Table 6. Spottail mantis shrimp length-weight relationship parameters in 2021.

2021	а	b	R ²	n
Combined	0.0024	2.8753	0.9	818
Females	0.0024	2.8781	0.9	450
Males	0.0026	2.8567	0.9	367

Figure 27. Annual length-frequency distribution of Spottail mantis shrimp at different depth strata (SCS; Shallow Continental Shelf, CS; Continental Shelf, US; Upper Slope and LS; Lower Slope) from 2019 to 2021 in Catalonia. (n) total number of measured individuals.

According to length-weight relationship parameters for both sexes combined (Table 6), spottail mantis shrimp displayed a negative allometric growth (b < 3). Likewise, when applying the growth curves separately for males and females, both sexes exhibited negative allometric growth.

The length-weight relationship is similar for both sexes. However, females are slightly larger than males, especially during the breeding season due to the high development of their gonads during this period. For the samples analyzed in 2021, an almost equal sex ratio was obtained.

A total of 450 females were biologically analyzed to study the gonadal cycle of the spottail mantis shrimp for 2021 (Fig. 28). Females' reproductive cycle showed a marked seasonality, ranging from December to early spring. Most females were in maturing stage (stage III) during winter with a peak of abundance during the month of March. The remaining months females were in resting stage (stage II).

It is worth mentioning that there are no data for June and October because there was no sampling during these months. For the remaining months without data (January, April, July, August, September and November), there was no catch even though samplings were conducted, probably due to individuals in mature and spawning stages (stages IV and V) were in shallower waters at late winter and early spring and our sampling design did not cover this bathymetry.

Figure 28. Spottail mantis shrimp monthly gonadal cycle for females. Gonadosomatic index (GSI +/-SD (Standard Deviation)) and percentage of different maturity stages.

Caramote prawn (*Penaeus kerathurus*) TGS

The total caramote prawn catch in Catalonia in 2021 was 71.35 t, only 38% of which were caught by bottom trawling (ICATMAR, 22-03). This species is mainly caught by small-scale fisheries.

Caramote prawn individuals were only measured on the shallow continental shelf since there was no catch on the rest of depth ranges (Fig. 30).

The spatio-temporal lengthfrequency distribution of caramote prawn indicates that the species' size range extended from 19 to 56 mm of cephalothorax length, with a mode located at 30 mm of CL for all years. In 2021, the number of measured individuals was almost 50% of the ones measured in 2019, however, there was a higher presence of larger individuals.

According to length-weight relationship parameters for both sexes combined (Table 7), caramote prawn displayed a negative allometric growth (b < 3). Likewise, when applying the growth curves separately for males and females, both sexes exhibited negative allometric growth.

Figure 29. Spatial distribution of Caramote prawn.

Table 7 Caramote prawn length-weight relationship parameters in 2021.

2021	а	b	R ²	n
Combined	0.0053	2.3809	1	177
Females	0.0032	2.4999	1	88
Males	0.0028	2.5652	0.9	61

Figure 30. Annual length-frequency distribution of Caramote prawn at different depth strata (SCS; Shallow Continental Shelf, CS; Continental Shelf, US; Upper Slope and LS; Lower Slope) from 2019 to 2021 in Catalonia. (n) total number of measured individuals.

The total number of analyzed individuals (both sexes combined) was 177 in 2021. In order to obtain more adjusted results, more data on smaller individuals and from the months when there was no catch would be required. As other crustacean species, female caramote prawns reach larger sizes than males.

This species shows a peak of females in mature stage (stage IV) in autumn. However, there was no catch in October and November although samplings were conducted. This lack of data was probably due to females swimming to shallower depths that are not covered by our sampling design during this period. During winter females were in resting stage (stage II). The reproductive period and gonadosomatic index graph is not presented for this species since the few data available do not cover its peak reproductive period.

Bottom trawling by port

In this section, for each depth range (i.e. continental shelf, upper slope and lower slope), maps, catch composition, species with most biomass landed, species with most biomass discarded and categories with higher mass debris of the ports where bottom trawling samplings were conducted during 2021 are shown.

From north to south, the ports are: Roses (Fig. 31 to 35), Palamós (Fig. 36 to 40), Blanes (Fig. 41 to 45), Arenys de Mar (Fig. 46 to 50), Barcelona (Fig. 51 to 55), Vilanova i la Geltrú (Fig. 56 to 60), Tarragona (Fig. 61 to 65), L'Ametlla de Mar (Fig. 66 to 70) and La Ràpita (Fig. 71 to 75).

Roses

Figure 31. Roses sampling trawls in 2021.

Figure 32. Roses catch composition. Percentage by weight of landings, discarded and debris fraction in each depth strata including all hauls in 2021.

Figure 33. Roses species with most biomass landed in 2021 (next page, top).

Figure 34. Roses species with most biomass discarded in 2021 (next page, center).

Figure 35. Roses cathegories with higher mass debris in 2021 (next page, bottom).

Figure 36. Palamós sampling trawls in 2021.

Landed Discarded Debris

Figure 37. Palamós catch composition. Percentage by weight of landings, discarded and debris fraction in each depth strata including all hauls in 2021.

Figure 38. Palamós species with most biomass landed in 2021 (next page, top).

Figure 39. Palamós species with most biomass discarded in 2021 (next page, center).

Figure 40. Palamós cathegories with higher mass debris in 2021 (next page, bottom).

 Others
 Mullus barbatus (Mbar)

 Trachurus trachurus (Ttra)
 Phycis blennoides (Pble)

 Lophius budegassa (Lbud)
 Lophius piscatorius (Lpis)

 Merluccius merluccius (Mmer)
 Micromesistius poutassou (Mpou)

Helicolenus dactylopterus (Hdac) Lepidorhombus boscii (Lbos) Parapenaeus longirostris (Plon) Nephrops norvegicus (Nnor) Aristeus antennatus (Aant) Illex coindetii (Icoi) Eledone cirrhosa (Ecir)

Others Lophius budegassa (Lbud) Boops boops (Bboo) Merluccius merluccius (Mmer) Trachurus trachurus (Ttra) Pagellus bogaraveo (Pbog) Coelorinchus caelorhincus (Ccae) Lampanyctus crocodilus (Lcro) Trachyrincus scabrus (Tsca) Conger conger (Ccon) Scyliorhinus canicula (Scan) Galeus melastomus (Gmel) Octopus salutii (Osal) Histioteuthis bonnellii (Hbon) Diazona violacea (Dvio)

Alcyonium palmatum (Apal) Pteroeides griseum (Pgri) Parastichopus regalis (Preg) Calliactis parasitica (Cpar)

Blanes

Figure 41. Blanes sampling trawls in 2021.

Landed Discarded Debris

Figure 42. Blanes catch composition. Percentage by weight of landings, discarded and debris fraction in each depth strata including all hauls in 2021.

Figure 43. Blanes species with most biomass landed in 2021 (next page, top).

Figure 44. Blanes species with most biomass discarded in 2021 (next page, center).

Figure 45. Blanes cathegories with higher mass debris in 2021 (next page, bottom).

[67]

Figure 46. Arenys de Mar sampling trawls in 2021.

Landed Discarded Debris

Figure 47. Arenys de Mar catch composition. Percentage by weight of landings, discarded and debris fraction in each depth strata including all hauls in 2021.

Figure 48. Arenys de Mar species with most biomass landed in 2021 (next page, top).

Figure 49. Arenys de Mar species with most biomass discarded in 2021 (next page, center).

Figure 50. Arenys de Mar cathegories with higher mass debris in 2021 (next page, bottom).

Barcelona

Figure 51. Barcelona sampling trawls in 2021.

Landed Discarded Debris

Figure 52. Barcelona catch composition. Percentage by weight of landings, discarded and debris fraction in each depth strata including all hauls in 2021.

Figure 53. Barcelona species with most biomass landed in 2021 (next page, top).

Figure 54. Barcelona species with most biomass discarded in 2021 (next page, center).

Figure 55. Barcelona cathegories with higher mass debris in 2021 (next page, bottom).

Others Trachurus trachurus (Ttra) Mullus barbatus (Mbar) Merluccius merluccius (Mmer) Trachurus mediterraneus (Tmed)

Lophius budegassa (Lbud) Phycis blennoides (Pble) Helicolenus dactylopterus (Hdac) Micromesistius poutassou (Mpou) Lepidorhombus boscii (Lbos)

Lophius piscatorius (Lpis) Scyliorhinus canicula (Scan) Galeus melastomus (Gmel) Nephrops norvegicus (Nnor) Parapenaeus longirostris (Plon)

Aristeus antennatus (Aant) Geryon longipes (Glon) Pasiphaea multidentata (Pmul) Illex coindetii (Icoi) Eledone cirrhosa (Ecir)

Others Spicara flexuosa (Sfle) Boops boops (Bboo) Trachurus trachurus (Ttra)

Spicara maena (Smae) Engraulis encrasicolus (Eenc) Phycis blennoides (Pble) Gadiculus argenteus (Garg)

Nezumia aequalis (Naeq) Scyliorhinus canicula (Scan) Galeus melastomus (Gmel) Nephrops norvegicus (Nnor) Lampanyctus crocodilus (Lcro) Pasiphaea multidentata (Pmul)

Illex coindetii (Icoi) Histioteuthis bonnellii (Hbon) Histioteuthis reversa (Hrev) Mesothuria intestinalis (Mint)

Figure 56. Vilanova i la Geltrú sampling trawls in 2021.

Landed Discarded Debris

Figure 57. Vilanova i la Geltrú catch composition. Percentage by weight of landings, discarded and debris fraction in each depth strata including all hauls in 2021.

Figure 58. Vilanova i la Geltrú species with most biomass landed in 2021 (next page, top).

Figure 59. Vilanova i la Geltrú species with most biomass discarded in 2021 (next page, center).

Figure 60. Vilanova i la Geltrú cathegories with higher mass debris in 2021 (next page, bottom).

Tarragona

Figure 61. Tarragona sampling trawls in 2021.

Landed Discarded Debris

Figure 62. Tarragona catch composition. Percentage by weight of landings, discarded and debris fraction in each depth strata including all hauls in 2021.

Figure 63. Tarragona species with most biomass landed in 2021 (next page, top).

Figure 64. Tarragona species with most biomass discarded in 2021 (next page, center).

Figure 65. Tarragona cathegories with higher mass debris in 2021 (next page, bottom).

Others Merluccius merluccius (Mmer) Lophius budegassa (Lbud) Trachurus trachurus (Ttra)

Gadiculus argenteus (Garg) Capros aper (Cape) Coelorinchus caelorhincus (Ccae) Lampanyctus crocodilus (Lcro)

Nezumia aequalis (Naeq) Trachyrincus scabrus (Tsca) Galeus melastomus (Gmel)

Octopus vulgaris (Ovul) Pteroctopus tetracirrhus (Ptet) Scyliorhinus canicula (Scan) Leptometra phalangium (Lpha)

L'Ametlla de Mar

Figure 66. L'Ametlla de Mar sampling trawls in 2021.

Landed Discarded Debris

Figure 67. L'Ametlla de Mar catch composition. Percentage by weight of landings, discarded and debris fraction in each depth strata including all hauls in 2021.

Figure 68. L'Ametlla de Mar species with most biomass landed in 2021 (next page, top).

Figure 69. L'Ametlla de Mar species with most biomass discarded in 2021 (next page, center).

Figure 70. L'Ametlla de Mar cathegories with higher mass debris in 2021 (next page, bottom).

[77]

La Ràpita

Figure 71. La Ràpita sampling trawls in 2021.

Landed Discarded Debris

Figure 73. La Ràpita species with most biomass landed in 2021 (next page, top).

Figure 74. La Ràpita species with most biomass discarded in 2021 (next page, center).

Figure 75. La Ràpita cathegories with higher mass debris in 2021 (next page, bottom).

Purse seine fishing

A total of 76 purse seine samplings were carried out in 2021 (Fig. 76)

Figure 76. Purse seine fishing sampling conducted in Catalonia in 2021.

SECTION 1

Purse seine fishing by species

European sardine (*Sardina pilchardus*) PIL

The total European sardine catch in Catalonia in 2021 was 3 654.99 t, over 92% of it caught by purse seine fishing (ICATMAR, 22-03).

The annual length-frequency distribution of European sardine shows a similar trend for all years (Fig. 78). The species size range extended from 7.5 to 18.5 cm with a mode located at 13.5 cm in 2019 and 13 cm in 2020 and 2021. It is worth noting that in 2021 there was a larger proportion of caught individuals below the size at first maturity, established at 10.5 cm (Albo-Puigserver et al., 2021), and the MCRS, located at 11 cm, representing immature and small-sized individuals that had not yet bred.

According to the length-weight relationship parameters for both sexes combined, the European sardine displayed a positive allometric growth (b > 3) (Table 8). Likewise, growth curves applied separately by sex showed that both sexes grew positive allometrically, exhibiting males higher b value landings.

Figure 77. Spatial distribution of European sardine landings.

Table 8 European sardine length-weight relationship
parameters in 2021.

2021	а	b	R ²	n
Combined	0.0053	3.1437	1	1 423
Females	0.0057	3.1135	1	728
Males	0.0048	3.1763	0.9	622

Figure 78. Annual length-frequency distribution of European sardine at different depth strata from 2019 to 2021 in Catalonia. Dashed red line indicates the MCRS (Minimum Conservation Reference Size). (n) is the number of measured individuals.

than females.

A total of 735 females and 665 males were biologically analyzed to study the gonadal cycle of the European sardine for 2021 (Fig. 79). The reproductive period was observed from October to April when males and females in active maturity states (stages II – V) were present. However, the reproductive peak seemed to appear from November to February, with a maximum in December for both sexes, when the highest proportion of spawners (stage IV) were detected. These results are in agreement with the gonadosomatic index (GSI), increasing in October, reaching maximum values from December to February (> 4 in females and > 3 in males), and declining in March. The highest proportion of individuals in resting state (stage VI) was observed from May to September, coinciding with the period when GSI exhibited the minimum values for both

Figure 79. European sardine monthly gonadal cycle for females and males. Gonadosomatic index (GSI +/-SD (Standard Deviation)) and percentage of different maturity stages.

sexes.

Anchovy (Engraulis encrasicolus) ANE

The total anchovy catch in Catalonia in 2021 was 5 559.54 t, over 94% of it caught by purse seine fishing (ICATMAR, 22-03)

The annual length-frequency distribution of anchovy shows a similar trend for 2019 and 2021, whereas a different pattern can be observed in 2020 (Fig. 81). In 2019 and 2021, more than 60% of the catch was composed of individuals between 11 and 12.5 cm with a mode located at 12 cm. In contrast, in 2020 the mode was located at 11 cm. It is worth noting that in 2020 there was a larger proportion of caught individuals below the size at first maturity, located at 9.6 cm ((Albo-Puigserver et al., 2021), and the MCRS, located at 9 cm, representing immature and smallsized individuals that had not yet bred.

According to the length-weight relationship parameters for both sexes combined, the European anchovy displayed a positive Figure 80. Spatial distribution of Anchovy landings.

allometric growth (b > 3) (Table 9). Likewise, growth curves applied separately by sex showed that both sexes grew positive allometrically, exhibiting males higher b value than females.

Table	9	Anchovy	length-weight	relationship
paran	net	ters in 202	1.	

2021	а	b	R2	n
Combined	0.0034	3.2474	1	1 490
Females	0.0035	3.2349	1	837
Males	0.0035	3.2424	1	582

A total of 779 females and 528 males were biologically analyzed to study the gonadal cycle of the anchovy for 2021 (Fig. 82). The reproductive period was observed from April to October when males and females in active maturity states (stages II – V) were present. However, the reproductive peak seemed to concentrate from May to July for both sexes, when the highest proportion of spawners was detected. These results are in agreement with the gonadosomatic index (GSI) throughout the year, increasing in April, reaching maximum values in June (> 4 for both sexes), and decreasing progressively at the end of summer until October. The highest proportion of individuals in resting state (stage VI) was observed from November to March, coinciding with the period when GSI exhibited the minimum values for both sexes.

Figure 81. Annual length-frequency distribution of Anchovy at different depth strata from 2019 to 2021 in Catalonia. Dashed red line indicates the MCRS (Minimum Conservation Reference Size). (n) is the number of measured individuals.

Figure 82. Anchovy monthly gonadal cycle for females and males. Gonadosomatic index (GSI +/-SD (Standard Deviation)) and percentage of different maturity stages.

Small-scale fisheries

Sand eel fishery

Sand eel fishery in Catalonia

In Catalonia, the main target species by the boat seines "sonsera" are Gymnammodytes cicerelus (Rafinesque, 1810), Gymnammodytes semisquamatus (Jourdain, 1879), and Aphia minuta (Risso, 1810). The two species of the genus Gymnammodytes are coastal species found on the continental shelf on shallow waters, on sand, shells and fine gravel bottoms, inhabiting burrows dug on sandy substrates and living in large groups.

The sand eel fishery is regulated by quotas and fishing effort limitations (number of vessels and fishing days per vessel). Fishing has a regulated closure during the spawning season, from December 15th to March 1st. However, the transparent goby is only allowed to be fished during the closed fishing period for the sand eels.

The total sand eel catch in Catalonia in 2021 was 73.75 t, all of it caught by boat seines "sonsera" within the co-management plan (ICATMAR, 22-03). During 2021 the opening and closure dates of the sand eel fishery slightly changed compared to previous years. It was opened on March 29th and closed on October 25th, but at that time, catches were providing less than 50% of species daily quota and, in accordance with article 6.6 of order ACC/155/2021, the fishery had to be closed. This implies that in October 2021 only one sampling was carried out, in Novem-

Figure 83. Sand eel samplings in 2021.

ber none and in December one sampling was done (during closure periods, one sampling per month is carried out to check the trend of the population before opening the fishery). A total of 27 samplings were carried out in 2021(Fig. 83).

SECTION 1

The 97% of catch were sand eel and 3% were discards composed by 25 different species (Fig. 84 left). The species more abundant in biomass on discards of sand eel was *Pagellus erythrinus* (Fig. 84 right).

Sand eel fishery by species

Mediterranean sand eel (Gymnammodytes cicerelus) ZGC

Figure 85. Annual length-frequency distribution of mediterranean sand eel (*G. cicerelus*) 2019 to 2021 in Catalonia.

The annual distribution of *G. cicerelus* length-frquencies ranged from 4 to 14 cm (Fig. 85). Size frequencies varies between the three years sampled. In 2019, 15% of individuals were small (from 6 to 8 cm). In contrast, in 2020 most of individuals achive 9 cm. In 2021 bimodal distribution was observed with high percentage of individuals of 6 and 10 cm, although with high percentage of small individuals (Fig. 85).

Figure 86. Mediterranean sand eel monthly gonadal cycle for females and males. Gonadosomatic index (GSI +/-SD (Standard Deviation)) and percentage of different maturity stages.

2021	a	b	R ²	n
Combined	0.0016	3.2229	1	977
Females	0.0025	3.0123	0.9	125
Males	0.0027	2.9635	0.9	111

Table	10. Mediterranean	sand eel	I length-weight relationship
paran	neters in 2021.		

The monthly distribution of the macroscopic classification of the maturity phases for *G. cice-relus* (Fig. 86) revealed the maximum occurrence of mature females (Phase IV) from December to March. The presence of spawning females (Phase V) was observed in January. Mature males showed a similar pattern as females, but the maximum peak of individuals in Phase V was found in April.

A total of 231 *G. cicerelus* (121 females and 110 males) were biologically analyzed to study their gonadal cycle during the sampling period (Fig. 86). The highest mean GSI, for both females and males, was found from December to March, with a peak of maximum activity in March. The months that are not represented in the graph were also sampled, but the individuals were small in size and their sex could not be determined.

The parameters of the length-weight relationship show a positive allelomeric growth for *G*. *cicerelus* (Table 10).

Smooth sand eel (Gymnammodytes semisquamatus) ZGS

Regarding the size frequency distribution of *G. semisquamatus* throughout the sampling period, the pattern is very similar to that of *Gymnammodytes cicerelus*. However, the number of specimens caught was much lower for *G. semisquamatus* (1 078) than for *G. cicerelus* (14 344).

The annual distribution of *G. semisquamatus* ranged from 3 to 13 cm (Fig. 87). Two modes can be found during 2019. Around 20% of the sampled individuals were 6 cm of total length, and the 10% were 11 cm long. In 2020, only one mode is recorded where 30% of the individuals sampled are 9 cm, while in 2021 the mode shifts to larger sizes, where 20% of the specimens are between 10 and 11 cm.

Figure 87. Annual length-frequency distribution of mediterranean sand eel (G. semisquamatus) from 2019 to 2021 in Catalonia.

Figure 88. Smooth sand eel monthly gonadal cycle for females and males. Gonadosomatic index (GSI +/-SD (Standard Deviation)) and percentage of different maturity stages.

Table 11. Smooth sand eel length-weight relationship parameters in 2021.

2021	a	b	R ²	n
Combined	0.0024	2.9637	1	186
Females	0.0055	2.6159	0.9	68
Males	0.0037	2.7935	0.9	50

The length-weight relationship of *G. semisquamatus* shows a positive allelomeric growth for 2021 (Table 11).

A total of 116 *G. semisquamatus* individuals (67 females and 49 males) were biologically analyzed to study their gonadal cycle for 2021 (Fig. 88).

Transparent goby (Aphia minuta) FIM

The annual distribution of Transparent goby ranged from 1.5 to 4.5 cm (Fig. 89). In 2019 most individuals were 4 cm of total length and in 2020 and 2021 3.5 cm long.

The monthly distribution of the macroscopic classification of the maturity phases for *A*. *minuta* (Fig. 90), revealed the maximum occurrence of maturing females (Phase III) in January and February. The months that are not represented in the graph were not sampled since the transparent goby is only allowed to be fished during the closed fishing period for the sand eel (December to March). Table 12 shows the size-weight relationship of *A. minuta*, where positive allelomeric growth can be observed in this species.

A total of 7 female *A. minuta* were biologically analyzed to study their gonadal cycle during the sampling period (Fig. 90).

Figure 89. Annual length-frequency distribution of Transparent goby from 2019 to 2021 in Catalonia. (n) is the number of measured individuals.

 2021
 a
 b
 R²
 n

 Combined
 0.0025
 3.3503
 1
 150

Figure 90. Transparent goby monthly gonadal cycle for females and males. Gonadosomatic index (GSI +/-SD (Standard Deviation)) and percentage of different maturity stages.

Common octopus fishery

Common octopus (Octopus vulgaris) OCC

A total of 57 samplings were carried out for the common octopus fishery in 2021 within the co-managed areas of Central Catalonia and the Ebre Delta (Fig. 91). Individuals below 1 kg weight were measured on board but not sold in auction, as explained by current regulation ARP/222/2020.

SECTION 1

Figure 91. Common octopus sampling in 2021. Central Catalonia (left), Ebre delta (right).

The total common octopus catch in Catalonia in 2021 was 294.26 t, approximately 60% of which were caught by small-scale fisheries (the other 30% were caught by bottom trawling; ICATMAR, 22-03).

The annual weight-frequency distribution of common octopus by fishing gear indicates that most of the individuals caught were below the MCRW, established at 1 000 g (Fig. 92). As for the comparison between gears, traps showed a concentrated distribution around the mode (800 g), which is below the MCRW, and pots caught higher abundance of smaller individuals. Temporal distribution shows that, from 2019 to 2021, abundance values have increased and grown closer to the MCRW, which also shows a decrease of the largest individuals in the landings. Also, the shape of the weight-frequency distribution for pots went from bimodal to unimodal, stressing the change in the composition of the landings.

A total of 626 females and 649 males were biologically analyzed to study the gonadal cycle of the common octopus for 2021 (Fig. 93). Both sexes show a spawning period during late spring and summer, with the highest presence of mature and spawner specimens (stages IV and V respectively) from May to August (Fig. 93). However, sexual differences were observed.

Figure 92. Annual weight-frequency distribution of Common octopus with different fishing gears (pots and traps) from 2019 to 2021 in Catalonia. Dashed red line indicates the MCRW (Minimum Conservation Reference Weight). (n) total number of mesured individuals.

The reproductive cycle of the females showed a marked seasonality, with the spawning period in late spring and summer. On the contrary, males showed a continuous reproductive cycle as advanced mature individuals occur all year-round. The lower presence of spawner females may be caused by a faster senescence process after spawning than in males which leads to an earlier death.

Figure 93. Common octopus monthly gonadal cycle for females and males. Gonadosomatic index (GSI +/-SD (Standard Deviation)) and percentage of different maturity stages.

Common octopus fishery in Central Catalonia

The annual weight-frequency distribution of common octopus in Central Catalonia showed similar values in terms of abundance between fishing gears, ranging from 20 g to 4 440 g (Fig. 94). As for the comparison between gears, pots showed a concentrated distribution around the MCRW, whereas traps' distribution was shifted towards higher weights. For both fishing gears, distributions showed the maximum abundance below the MCRW.

Figure 94. Annual weight-frequency distribution of Common octopus from 2019 to 2021 in center Catalonia. Dashed red line indicates the MCRW (Minimum Conservation Reference Weight). (n) total number of mesured individuals.

A total of 433 females and 480 males were biologically analyzed to study the gonadal cycle of the common octopus in Central Catalonia for 2021 (Fig. 95). Both sexes show a spawning period during late spring and summer, with the highest presence of mature and spawner specimens (stages IV and V respectively) from May to August. However, sexual differences were observed: females' reproductive cycle show a marked seasonality, with the spawning period in late spring and summer and, on the contrary, males showed a continuous reproductive cycle as advanced mature individuals occur all year-round.

Figure 95. Common octopus monthly gonadal cycle for females and males. Gonadosomatic index (GSI +/-SD (Standard Deviation)) and percentage of different maturity stages.

Common octopus fishery in the Ebre Delta

The annual weight-frequency distribution of common octopus in the Ebre delta was carried out considering only pot catches (Fig. 96). Individuals were in general larger than in the central region, reaching 4 600 g, although the shape of the distribution is similar in both areas.

Figure 96. Annual weight-frequency distribution of Common octopus from 2019 to 2021 in Ebre Delta zone. Dashed red line indicates the MCRS (Minimum Conservation Reference Size). (n) total number of mesured individuals.

A total of 193 females and 169 males were biologically analyzed to study the gonadal cycle of the common octopus in the Ebre Delta for 2021 (Fig. 97). Both sexes showed a spawning period during late spring and summer as the highest presence of mature and spawner specimens (stages IV and V respectively) was from May to August. However, sexual differences were observed. Females' reproductive cycle showed a marked seasonality, with the spawning period in late spring and summer. On the contrary, males showed a continuous reproductive cycle as advanced mature individuals occur all year-round. The lower presence of spawner females may be caused by a faster senescence process after spawning than in males which leads to an earlier death.

Figure 97. Common octopus monthly gonadal cycle for females and males. Gonadosomatic index (GSI +/-SD (Standard Deviation)) and percentage of different maturity stages.

SECTION 2

Information systems and data analysis

Introduction

The main purpose of ICATMAR of advising the administrations in fisheries management needs a strong data structure that allows its dynamic input and exploitation. A summary of the workflow is provided in Fig. 98, from data collection to the final products. The main technologies used and conceptualization of ICATMAR information systems have been described in previous reports (ICATMAR 2020). The present report only focuses on the latestupgrades implemented.

Figure 98. Workflow for ICATMAR data input, storage and exploitation. Different technologies and concepts are specified including upgrades done in 2021.

Data input

One of the main data sources of ICATMAR is the field sampling done on board commercial fishing vessels (Section 1 of this report). In order to improve efficiency and quality in data input, a website was developed to allow field data introduction to ICATMAR databases. This system allows all samplers to introduce data autonomously, to implement automatic data checks to reduce errors in data stored in databases, and perform automatic calculations to help in their analysis. As the sampling is being modified and expanded to other fleets besides bottom trawling, the website and database structure need to be updated to incorporate sampling specifications and continuous improvements.

In all samplings on-board and in the laboratory, data are collected in sampling forms and entered in the website in order to centralize information, improve quality, relate data concepts and perform the corresponding calculations.

Purse seine on-board sampling

As the website and database were already allocating purse seine sampling from the fishing markets, only a few changes had to be performed in order to also support on-board sampling, which is currently in a testing phase. To extrapolate the samples measured on-board and in the laboratory, the following fields have been added per haul: total weight of the catch, total weight released alive, the number of boxes, and the weight of each box (Fig. 99).

TOTAL PESCA								
CAPTURA TOTAL (G)	CATEGORIA	PES ALLIE	BERAT VIU (G)	NÚMERO	NÚMERO DE CAIXES			ELIMINAR?
	SenseCateg 🗸	150000						0
+ Afegir un/a altre/a Total pesca.								
MOSTRES								
ESPÈCIE	MOSTRA GUARDADA	N TOTAL MOSTREJAT	PES TOTAL (G)	PES MOSTREJAT (G)	SUBMOSTRA	CATEGORIA	ACCIONS	1
Engraulis encrasicolus (ANE)	•	279	6850.00	3000.00	1.000	Solta	► Freqüèr	nciaDeTalles Biol
Sardinella aurita (SAA)	•	2	5.60		1.000	Solta	► Freqüèr	nciaDeTalles Biol
Trachurus trachurus (HOM)	•	2	20.54		1,000	Solta	► Freqüèr	nciaDeTalles Biol
Illex coindetii (SQM)	•	3			1.000	Solta	✓ Freqüèr	nciaDeTalles Biol

Figure 99. Example of a purse seine on-board sampling where the catch has been released. As one box of this release is sampled, the corresponding biological data is collected and marked as released.

New features have been added to the website so that samplers can register different types of situations specific to purse seine on-board sampling, such as the release of the catch, triage of the catch, or the performance of more than one haul for the same fish school.

Common octopus fishery

As part of the management plans of the common octopus of the Catalonian central coast and Ebre delta, some fields have been added to support the data collection for this sampling. In order to extrapolate the data collected during on-board sampling, some extra parameters have been added.

Sampling GPS data

Geographic information is crucial for field sampling data. It is especially important for trawling hauls, as the swept area must be calculated in order to obtain sampled species abundance and biomass values. For this reason, special efforts were directed towards the development of a tool for GPS data input and validation in the input data website. As fishing operations vary between fishing fleets, the data check protocol and structure had to be adapted to each fishing gear:

Bottom trawling fishery

During bottom trawling fishery sampling, all sampled hauls positions are registered in a GPS device. Point data is collected at a frequency of 1min. On-board positions are also collected every 15 min from the moment the fishing gear starts fishing until it is collected again.

Input data website users can upload a .gpx file by haul and then visualize its data together with positions collected manually on board (Fig. 100). GPS track will automatically be cut at the start and end trawling positions so only the positions corresponding to the fishing haul are registered. The total swept area by haul is obtained from combining the total trawled distance – considering all points – and the fishing gear mouth opening distance. All information is automatically stored in the database.

Purse seine and sand eel fishery

There are two main objectives under geolocating purse seine and sand eel samplings: locating the sampled species and understanding the spatial dynamics of the fleets. To do this, all sampling cruises are registered with a GPS device, from the moment of port departure until the vessel returns. All operations are registered at a frequency of 1 min, and fishing operations are marked with a waypoint. Website users upload a .gpx file including all cruise information. Fishing positions can be compared with manually on-board registered positions, and cruise positions are cut from the moment of departure until the return to portand all information is stored in the database for further treatments (Fig. 101).

lodificar pesi	ca										HISTOR
ESCA											
(mbarcament)	2021-02-18,	LAmetila de Mar,ESP	000025837: PERET	TIPAQUITA	Tipus de pesca:	ARR	OSSEGAMENT				
lamero:	1 Tipus d	e fons:	PLATAFORMA P	Profunditat m	vitjana (m): 1,0	Tipus d'art m	enor:				
toporció de rebuig	р 1										
•		2 A							Prosi	ció d'embarcam	vent
00 m			2		Cod Duras Duras Dotale Areas	de pesca sesca 20210218 la (nun) 60.72 cica (m) 7405.85 recombrada (m2)	63210_ESP00	× x025637_01	Punt Punt Punt Way Way Linia guar	CPS CPS guardat a point GPS point GPS guar a d'arrossegame réada a 80 At 0 OpenStreet	BD Sat a BD ent
00 = Dising no ket Komeant	1054	PROFUNDITIAT (M)	AFTRELITY, (M)	LATITUD (ORAUS)	Linia Cod Dune Dute Area	de pesca sesca: 20210218, is (nm): 402022 cia (m): 7465.85 recombrada (m2) cartinua pescocio)	63210_ESP00 93323.13	X025897_01	Punt Punt	CPS CPS guardat a point CPS point CPS point CPS guar d'arrossegame réada a 80 ht 0 OperCent LESTAOLL	BD dat a BD ent Kap combus
00 = DSICODING CMENT ART FERM	HORA V 060050 Ara10	PROFUNDITAT (M)	VELOCITAT (KM)	LATTOP IORAUR) 43	Linia Down Areas Latituto (MarvoScimal) 49.099	de pesca secon 20210218 la (mm): 60.72 cia (m2): 7465.85 recombrada (m2) LATITUB (Delecció) N v	63210_ESP000 63323.13 0 LONGITUD (SRAUS) 0	× 0005607_01 0000000000000000000000000000000000	Punt Punt Punt Punt Punt Quar Quar Quar Constitute Constit Cons Cons Cons Cons Cons Cons	CPS CPS guardat a point GPS point GPS point GPS guard a d'anrossegand rdada a 80 Mel I 0 OperStock Defention per LIXITADIL	BD dat a BD ent ELMANA
20 = SACONS OMENT ART FERM MIN15	HOBA ▼ 060050 Ara1⊙ V 0615500 Ara1⊙	PROFUNDITAT (M)	VELOCITAT (KM)	LATTOP (ORAUG) 40	Linia Cos Dorde Dorde Artia (Attritue (Mittritue (Mittritue (Mittritue) (Mittr	de pesca sesos 20220218, in (rws), 60.72 cs. (m): 768.58 recombrada (m2) LATITUD (pescoció) N v N v	63220_ESP000 63323.13 LONGTUD (BRAUD) 0	x025637_01 x025637_000000000000000000000000000000000000	E Vitt	CPS CGPS quartist a point GPS at d'anrossegame at d'anrossegame ter 0 CpercEcevet percence del percence del ctastAnual	BD dat a BD ent ELMMAA
NIT FERM	HOBA ✓ 06:00:00 Ara1Q ✓ 06:50:00 Ara1Q ✓ 06:30:00 Ara1Q	PROFUNDITIAT (M) 1.0000	VEPOLITY (60)	LATITUD (08.4.0) 40 40	Linia Cos : Derek Derek Derek Area : LATITUD [MIN-OECIMAL] 49.089 48.286 47.847	de praca presa: 2020228, la (ren): 60,072 contente and (ren): 60,072 contente and (ren): 60,072 contente and (ren): presente and (ren): presente and (ren): N v N v N v	63220_ESP00 63323.33 LONGTUD (068443) 0 0	x005697_01 LONGITUD (MIX-OCCMAL) 49.511 50.218 51.371	E v	CPS ICIPS quarket a point GPS point GPS point GPS guarn of dranossegante inside a 800 Rei I C OperCent Cel USTADIL	BD dat a BD ent CLIMMAR
20		PROFUNETER (M	VELOCITAT (KM)	LATITUD (0ALUS) 40 40 40	Linia Cod Diale Diale Area a Mare-OCIMAL) 42.089 48.285 47.847 47.341	de preca preca 20210218, la la preva 50 720 casa (leg) 7805 85 reporter a transfer and precambrada (leg) N v N v N v N v N v	63220_ESP00 63323.13 LONETUD (08Au3) 0 0 0	x025637_01 x025637_01 x025637_01 x040550444,) 49.511 50.218 51.371 52.408	E v	CPS guerdat a ic CPS querdat a point GPS point GPS guarn if dranossegand infanossegand infanossegand issasa a 80 bir (0 CyercRoot Cel LISTADIL DerCROOT Cel infanossegand inf	BD Set a BD CLANNA CLANNA

Figure 100. Example of bottom trawling sampling GPS data input through input data website. GPS points (blue), stored points in the database (yellow), trawled line and manually introduced positions (blue pointer) are shown. Users can check data stored in the database.

Figure 101. Example of purse seine sampling GPS data input through input data website. Raw GPS points (blue), stored GPS track points (yellow) and fishing positions (fish icon) are shown.

Common octopus (Octopus vulgaris) fishery

Octopus vulgaris fishery uses pots and traps lines that are set on the sea bottom and collected a few days after. On-board sampling involves the collection of the fishing gear lines. Each haul positions are registered with a GPS device and initial and final positions are noted manually on board. Once the website users upload the .gpx file for each haul, points between start and end positions are stored in the database (Fig. 102). In addition, since a haul may consist of more than one line, points between lines are deleted, storing only positions where boat speed is between 1 and 9 km/h.

Institut Ca per a la Gr	italà de Rec overnança o	serca Sel Mar					INGUT/DA, JOAN						
Modificar p	esca										(IISTÖR	0
PESCA													
Embarcament:		2021-05-1	9_Sant Carles de la Rà	pita_ESP00002402	2: SARON	Tipus de p	esca:	ART	S MENORS				
Número:		1 Tipus	de fons:	Profunditatin	nitjana (m):	0,0 1	lipus d'art meno	ic.	NANS	ES			
Proporció de re	buig:	1											
Get m Get m Ge	eta entrala im Predmena Nataria	HORA	Man de Trij m	San Mon de l Hora Late Long Prof	rent: FINAL E: 1259:00 ud: 40:60028 gnut: 0:61445 unditat: None		LATT	10		Posició d'emba Punt GPS Punt GPS guard Waypoint GPS Unia d'arrosse guardada a BD Leater J O Opens	guardat a BD guardat a gament	a BD	
		- Andrew	, and analytical field	reason on party	(GRAUS)	(MIN+DECI	MAL) (DIREC	ció)	(GRAUS)	(MIN+DECIMAL)	(DIREC	010)	DE
INICI	*	11:58:08 Ara I 🕥			40	35.375	N	v	0	35.761	E	*	
FINAL	×	12:59:00 Ara I 📀			40	36.017	N	×	0	36.867	E	~	

Figure 102. Example of pots/traps sampling GPS data input through input data website. Raw GPS points (blue), stored GPS points (yellow) and manually introduced positions (blue pointer) are shown. Positions between fishing lines are not stored in the database following the speed filter applied.

External data: keeping updated

As described in previous reports (ICATMAR 2020), an important part of the data stored in ICATMAR database corresponds to external data sources (Fig. 98). All these datasets must be kept updated, since most of ICATMAR data analysis and reports depend on them. The main information sources are Vessel Monitoring System (VMS) geolocation data, landings data, and fleet register datasets.

• **EU Fleet register** information is downloaded from the official fleet register website. This is crucial information that will be linked with practically all datasets used in ICATMAR databases. It is necessary to update it as the number of active vessels may change or active vessels can vary their port base or fishing gears.

• Landings data are periodically received from the Catalan Fisheries Secretariat. Data must be validated, cleaned, linked with fleet register data, and stored.

• VMS data are periodically received from the Spanish Fisheries Secretariat. Data must be validated in multiple ways, cleaned, interpolated, structured, linked with fleet register and landings datasets, and stored.

• **Geoblau** is a new positioning system implemented by the Catalan Fisheries Secretariat. All fishing vessels (with no length limits, contrary to VMS system) will mandatorily be equipped with Geoblau devices to track their position, speed and course at a high time frequency. At the moment, the system is in testing phase but first contacts with ICATMAR have been done in order to exchange expertise in geographic tracking of fishing fleets and to help its development. Geoblau data storing systems is also being discussed as ICATMAR needs to be able to access Geoblau data easily to complement the fisheries spatial analyses that are already being done with other positioning systems.

Other projects

Since ICATMAR is located within the Department of Marine Resources of the Institute of Marine Sciences (ICM-CSIC), ICATMAR team has taken the opportunity to integrate datasets from different scientific projects regarding fisheries in its input website, thus rendering data access easier for the users in the Department. As a general way of dealing with different teams introducing data for different projects, the data introduction website has been adapted to support a system of privileges depending on the identity of the logged user. In this sense, each user can only view and edit the group of projects to which they are previously assigned..

Two of these projects which are especially useful for further analysis, 50SELS and 4550SELS, are focused on fishing gear selectivity. To evaluate the selectivity of mesh sizes of 45 and 50 mm of the bottom trawling fishery, different actions have occurred to integrate related data in ICAT-

MAR's information systems. The database and data input website have been adapted to collect data from cod-end cover fraction. The main changes implemented are related to data input, storage, validation and calculations. Minimum lengths for many species have been updated, as cod-end cover catch smaller individuals. Once these new functionalities were developed, all data from 50SELS project have been imported in the database, consisting of 42 hauls, almost 300 positions and more than 25 000 measured individuals. Then, a group of biologists entered the data from 4550SELS project through the data input website, consisting of 83 hauls, more than 900 positions and 80 000 measured species.

Another external project that uses the ICATMAR data input website and database is the sampling of the cuttlefish (*Sepia officinalis*) fishery. As part of the management plan of the cuttlefish in Pals and Roses bays, a new protocol was defined in order to allow data collection by the fishermen themselves. A reduced group (cuttlefish fishermen samplers), were collecting extended data, and others who were willing to participate (cuttlefish fishermen collaborators), were collecting reduced data. All the changes to allocate this new sampling were performed in the database and the website and the collected data on the sampling forms were entered.

Data storage

Updated database structure

The relational database has been created in PostgreSQL with PostGIS. The database has been designed as object-relational database, combining a relational database with an object-oriented model, to simplify object-oriented programming. The model of the database has been designed grouping the related fields in tables regarding each data concept, relating them with its corresponding cardinality and seeking to reduce data redundancy (Fig. 103). The database has been updated from previous versions to allocate new samplings and changes on the previous ones. The main objectives on these updates are reusing fields, unifying formats and storing related data in a common structure to simplify their combination, analysis and reusing the developed products.

Figure 103. Database model. Each piece of information is structured and related in the database.
Database content

The fishing samplings started in October 2018. As of today, 941 fishing hauls have been sampled, registering 2 800 positions, measuring 270 000 individuals and dissecting over 49 000 of them (Fig. 104). On bottom trawling sampling, the trawled distance is 2 500 km.

Figure 104. Amount of records of the fishing sampling data stored in the database.

Besides the project own data, external datasets are currently integrated in the database or could be integrated in the future on the same structure (Fig. 105). These datasets are directly related with the project and facilitate the overall analysis and evaluation.

Figure 105. Amount of records some external data in the database.

Data processing

Improvements in data analysis. VMS interpolation

As described in previous ICATMAR reports (ICATMAR 2020), VMS data are used to calculate the spatial distribution of fishing effort and landings for the Catalan fleet. Until recently, trawling fleet data was analyzed using methodologies described in literature (Lee et al., 2010), while we used the methodology developed by ICATMAR (Sala-Coromina, 2020) for purse seine data. However, in the last few years improvements have been made in VMS analysis that had to be implemented in ICATMAR's routine analysis, mainly VMS interpolation.

VMS point frequency is set to a minimum of two hours between pings. Using this point frequency could miss vessel operations such as steaming phases between different hauls, or underestimate haul fishing times (Shepperson et al., 2018). In order to overcome these issues, a number of VMS interpolation methodologies have been developed with the objective of artificially reducing ping frequency and therefore calculating better estimates of spatial fishing footprints (Hintzen et al., 2010; Russo et al., 2011; Shepperson et al., 2018).

We have adopted a Cubic Hermite Spline interpolation method developed by Russo et al. (2011), using vmsBase R package (Russo et al., 2014) to interpolate raw VMS points to a frequency of 10min. At present, interpolation methods have been implemented to the bottom trawling fleet (Fig. 106), since this methodology still needs to be validated for the purse seine fleet.

Sampling biological calculations

In order to simplify the analysis, standardization and extrapolation of the collected data, some parameters are calculated automatically when the data is entered through the website. Some changes on the input data require a full recalculation of all parameters, therefore this recalculation is performed nightly not to slow down the user responsiveness of the website.

The calculations take into account the proportion of each fraction of the catch that is brought to the laboratory for analysis In all cases, if the sample is not part of the discard or cod-end cover fractions, the proportion is always 1.

Each measure of individual length taken in the laboratory corresponds to a particular haul, species and species size category. For each of these values, the following parameters are calculated:

CalculatedFrequency (ind): Extrapolated amount of individuals of the same length. The individuals are grouped every half cm depending on the species.

CalculatedFrequency

```
= Frequency * SampleProportion * DiscardProportion
* CodEndCoverProportion
```


Figure 106. Comparison between raw and interpolated VMS data treatment. In figures A and B it can be compared the result of the interpolation (B) compared to raw VMS points (A) when calculating fishing tracks for a specific vessel. In figures C and D it is shown how spatial resolution improves when using interpolated data (D) instead of raw VMS points (C) once accounting for accumulated annual fishing effort by km².

Abundance (ind/km²): Extrapolated amount of individuals of the same length per km² (only for bottom trawling sampling).

$$AbundancePerLength = \frac{CalculatedFrequency}{SweptArea}$$

TotalCalculatedWeightParamsAB (g): Extrapolated total weight obtained from transforming the length of the measured individuals into its corresponding weight with the length-weight relationship of the species.

$$TotalCalculatedWeightParamsABPerLength = a * Length^{b} * CalculatedFrequency$$

Biomass (kg/km²): Extrapolated biomass of the individuals of the same length per km² (only for bottom trawling sampling).

 $BiomassPerLength = \frac{TotalCalculatedWeightParamsABPerLength/1000}{SweptArea}$

Each sample is a collection of data associated to a particular haul, species, and species size

category. For each sample entered into the website, the following parameters are calculated:

CalculatedTotalAmount(ind): Extrapolated amount of individuals.

CalculatedTotalAmount

- = TotalAmount * SampleProportion * DiscardProportion
- $* \ CodEndCoverProportion$

Abundance (ind/km²): Extrapolated amount of individuals per km² (only for bottom-trawling sampling).

 $Abundance = \frac{CalculatedTotalAmount}{SweptArea}$

TotalCalculatedWeight (g): Extrapolated total weight.

In case there is no total weight:

TotalCalculatedWeight = TotalWeight * DiscardProportion * CodEndCoverProportion

TotalCalculatedWeightParamsAB (g): Extrapolated total weight obtained from transforming

Total Calculated Weight

- = SampleWeight * SampleProportion * DiscardProportion
- $* \ CodEndVoverProportion$

each individual measured the length of the measured individuals into its corresponding weight with the length-weight relationship of the sample species. Frequency is the amount of individuals with the same measure because depending on the species the individuals are grouped each half cm.

$$I'otalCalculatedWeightParamsAB = \sum_{x=1}^{TotalAmount} TotalCalculatedWeightParamsABPerLength_{x}$$

Biomass (kg/km²): Extrapolated biomass of the sample (only for trawling sampling).

$$Biomass = \frac{TotalCalculatedWeight/1000}{SweptArea}$$

In case there is no TotalCalculatedWeight:

 $Biomass = \frac{TotalCalculatedWeightParamsAB/1000}{SweptArea}$

At the present moment, the dissemination channels of ICATMAR data analysis products are mainly technical reports. Due to the fact that most of the geographic products have to be generated annually, their production has been automated using QGIS and R directly connected to our database (Fig. 98).

State of fisheries in Catalonia 2021, Part 1

Data visualization

ICATMAR web architecture has been designed with the aim of improving the scientific knowledge transfer to different agents and having a dynamic way of accessing and visualizing analyzed data (Fig. 107). A new ICATMAR website will be developed to provide information about the institution, related services, team, publishing reports and related news. To simplify data sharing and visualization the website will host two data viewers: one of them oriented to the general public, and the other focused on the needs of the scientific community.

General viewer

The general viewer will provide access to ICATMAR sampling data in a dynamic way for the general public without user login. It is currently in a prototype phase and is being developed to fulfill all possible related requirements for bottom trawling fisheries. The prototype has been developed in collaboration with Xarxa Maritima de Catalunya.

Figure 107. Structure of ICATMAR dynamic visualization systems.

As the sampling is spread along the Catalan coast, dynamic pie charts have been developed to visualize the biomass of species (kg/km²) on the different sampled areas and ports (Fig. 108). By selecting a specific port, the related catch composition (landed, discarded and debris) is displayed, with the proportion of species and debris for each fraction. In addition, a comparison between two different ports or areas can be viewed. Besides this spatial visualization, the same type of information and comparisons can be viewed with the data grouped temporally by season of the year.

Having information about the trends in length structure of the species is important for evaluating the status of the species. Therefore, length frequency is visualized dynamically for all sampled species in number of individuals per km² (Fig. 109). The length frequency can also be compared between species.

Figure 108. Sampling catch composition between areas and ports (left) and la Ràpita port (right) of ICATMAR's general viewer.

Freqüència de talles

Figure 109. Species size frequency representation for Aristeus antennatus of ICATMAR's general viewer.

A Web API (Application Programming Interface) has been developed in NodeJS to get all processed and validated data from the database and serve it to the web general viewer.

Scientific viewer

For further data sharing and management, a scientific viewer is being designed and will be accessible through ICATMAR website as well.

The main objective of this viewer is to give access to all available ICATMAR datasets, either geographic or not, to a variety of users. The system allows the publication of layers stored in ICATMAR databases or static datasets (Fig. 110). Each layer contains its metadata, specific styles and attributes. Users can view data, change between available styles, make maps combining layers (Fig. 111) and download drawn maps and specific layers.

Technologies used will be Geoserver and Geonode, a Django-based website that allows users management. Therefore, users access to published data can be controlled together with their permissions to interact with layers. Moreover, through Geoserver a Web Map Service (WMS) system can be designed and therefore data use can be maximized through different platforms.

Figure 110. Layer exploring page of ICATMAR's scientific viewer. All available layers can be explored individually to get information about data source, authors and other metadata. Layers can also be individually downloaded in different formats.

Figure 111. Map exploring page of ICATMAR's scientific viewer. Available layers can be combined so different datasets can be compared. In this example, the fishing effort of the Catalan bottom trawling fleet is combined with the SAP trawling sampling hauls.

SECTION 3

Temporal persistence and spatial differentiation of the bottom trawling fishery métiers

Introduction

In 2019, a European regulation established a multi-annual plan (MAP) for the demersal fishery in the north-western Mediterranean (EU) No 508/2014). To achieve the goal of maximum sustainable yield by 2025 at the latest, the regulation proposes several measures, i.e. defining a maximum number of fishing days per year (Art.7), creating measures on gear selectivity (Art.13), determining minimum reference sizes (Art.13) and establishing temporary and spatial closures (Art.11). Trawling in the Mediterranean is multi-specific, with more than 150 species (Osio et al., 2015). However, only five species are subject to management measures and are periodically evaluated at the Geographical Sub-Area (GSA) level (GSA06, in the case of NW Mediterranean) by official bodies, such as the Scientific, Technical and Economic Committee for Fisheries (STECF) and the General Fisheries Commission for the Mediterranean (GFCM). These species are hake (*Merluccius merluccius*), red mullet (*Mullus barbatus*), blue and red shrimp (*Aristeus antennatus*), Norway lobster (*Nephrops norvegicus*) and deep-water rose shrimp (*Parapenaeus longirostris*).

The Catalan coast, representing, approximately, the northern half of the GSA06, has been defined as the study area. It is characterized by having distinguished bathymetric ranges: coastal shelf (25–100 m), deep shelf (101–200 m), upper slope (201–500 m) and lower slope (501–800 m), (e.g. Massutí & Reñones, 2005). There are 23 fishing ports throughout Catalonia, 14 of them having bottom otter trawl (OTB) fleet. Within the Catalan demersal fleet, trawlers represent 75% of both catches and income, 38% of the vessels and 82% of the GT (gross tonnage) (source: Generalitat de Catalunya, 2020).

The European Common Fisheries Policy recognizes the importance of accounting for heterogeneity in fishing practices promoting a métier-based sampling as the core of the EU Data Collection Framework. A *métier* is defined as a group of fishing operations that aim for a similar group of species using similar fishing gear during the same period and / or in the same area and with a similar pattern of exploitation (DCF, Regulation (EC) No 949/2008 and Commission Decision 2010/93 / EU). Given this definition, considering the characteristics of the NW Mediterranean fishery, and the current legislative framework, two main objectives have been defined for the present work:

• Define a protocol to identify *métiers* along with their temporal and geographical evolution;

• Characterize the bottom otter trawl (OTB) fleet by *métier* considering four facts: main target species, by-catch harvested community, temporal persistence, and spatial deployment.

Métiers identification by port

To identify *métiers* by port for the Catalan bottom trawling fleet (OTB), the same methodology was used as described in ICATMAR, 2021-02. Landings and revenues from 2002 to 2021 were used, accounting for approximately 15 million records. At each port (a total of 14 with OTB fleet), dendrograms and cluster analysis were performed, and then for each trip (vessel + day), the corresponding *métier* was assigned. Given the properties of the *métiers*, all ports of the Catalan coast were grouped by zones to facilitate the interpretation of the data globally. For more detail, Table 13 defines the different *métier* codes and names for the different ports grouped by zone, i.e. north, center and south. Then, all new data was added to the initial database and a Principal Component Analysis (PCA) was performed to check the spatial distribution.

Métier code	Métier name	Zone occurrence	
OTB1	Coastal shelf	North/Center	
OTB1A	Coastal shelf (south A)	South	
OTB1B	Coastal shelf (south B)	South	
OTB2	Deeper shelf	North/Center	
OTB2A	Deeper shelf (south A)	South	
OTB2B	Deeper shelf (south B)	South	
OTB3	Upper slope	North/Center	
OTB4	Lower slope	North/Center	

Table 13. Métier codes and names for each zone.

Data analysis shows that the horizontal axis of the PCA (Fig. 112) indicates that 45% of the variability is caused by the species composition of the catch. This fact determines a difference between the species composition of the shelf *métiers* (OTB1, OT- B1A, OTB1B, OTB2, OTB2A, OTB2B), as shown in the right side of the figure, and the slope *métiers* (OTB3, OTB4), seen on the left side of the figure. The vertical axis from Figure 112 describes the 17% of the variability, indicating that the difference between the shelf *métiers*, that is coastal shelf *métiers* (OTB1, OT-B1A, OTB1B) and deeper shelf *métiers* (OTB2, OTB2A, OTB2B), are smaller. Similarly, there is less variability between the upper slope *métiers* (OTB3) and the lower slope *métiers* (OTB4). Figure 112 also shows that the ports from the north and the center of the Catalan coast present two shelf *métiers* (OTB1-OTB2) and two slope *métiers* (OTB3-OTB4). The south zone has a different dynamic because all the ports present four shelf *métiers*, two from costal shelf (OTB1A, OTB1B) and two from deeper shelf (OTB2A, OTB2B); except L'Ametlla de Mar port, which also presents the lower slope *métier* (OTB4).

A different PCA was plotted to understand the species that drive the different métiers (Fig. 113). The horizontal axis of the PCA explains the largest part of the variability within the catch composition. In the coastal shelf *métiers* of the southern Catalan coast (OTB1A, OTB1B) the most important species was the spottail mantis shrimp. In the coastal shelf *métier* (OTB1) of the center

Figure 112. PCA shows the trips grouped by month for all the ports of the Catalan coast with trawling fleet differentiated by métier and zone (color and symbol) for the period 2017-2021.

Figure 113. PCA represents the trips grouped by month for all the ports of the Catalan coast with trawling fleet differentiated by *métier* and zone (color and symbol) for the period 2017- 2021. The species that contribute to the 75% of the landings for this period are also shown; each arrow indicates the *métier* and zone in which they are more important in terms of landings.

zone, the most prominent species were the sea-bream (*Pagellus erythrinus*) and the red mullet, and for the north coast, the mackerel (*Trachurus* spp.) and the octopus genus *Eledone* spp. Some of the most landed species from the deeper shelf *métiers* (OTB2, OTB2A, OTB2B) were shared in all zones of the Catalan coast; for example the mackerel, *Eledone* spp, the cephalopod family *Ommastrephidae*, and the hake. In the upper slope *métier* (OTB3) of both the north and center

zone, the Norway lobster and the blue whiting (*Micromesistius poutassou*) are the most relevant. Finally, blue and red shrimp was the only species shown for the lower slope *métier* (OTB4), highlighting its importance.

After verifying the normality of the residuals (Fig. 114), a statistical test was performed (Table 14). The results showed that there were significant differences (p-value < 0.001) among *métiers* and among years, but not among the interaction *métiers* and years, indicating a *métier* consistency during the time series. The statistical analyses were also performed by port (Annex 2).

Figure 114. Residuals distribution and adjusted data using a negative binomial model for bottom trawler métiers.

Multivariate test ANOVA	Res.Df	Df.diff	Dev	p-value
Métier-Métier	152	7	17099	0.001***
Year-Year	151	1	3956	0.001***
Métier-Year	144	7	3434	0.067

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Table 14. ANOVA test results indicating significant differences (*) for bottom trawler métiers. Residuals (Res. Df), degrees of freedom (DF. Diff), deviation (Dev) and p-value are reported.

Species composition

For the north zone (Fig. 115) the species landed the most on the coastal shelf were the mullets, which increased the percentage of landings over the years, and mackerel. On the deeper shelf, *Eledone* spp added up to 25% of the landings, despite that the hake was the most important species. For the upper slope *métier* the species most landed was the blue whiting, followed by the Norway lobster. Finally, in the lower slope, the blue and red shrimp dominated the landings, with over 50%.

Figure 115. Most important species in terms of landings percentage for the four métiers of the north zone of the Catalan coast during the period (2002-2021).

For the center zone (Fig. 116) and in the coastal shelf *métier*, the red mullet was the species most landed increasing the percentage throughout the years. In the deeper shelf, *Eledone* spp decreased the percentage of landings during the last years. On the contrary, landings of monkfish (*Lophius* spp.), hake and Ommastrephidae, slightly increased. In the first years on the upper slope *métier*, the blue whiting and the hake were responsible for the 50% of the landings; in the last years, the percentages of Norway lobster and *Phycis* spp. have increased. In the lower slope, the blue and red shrimp was the most important species and increased the percentage of landings throughout the years.

In the south of the Catalan coast all *métiers* were from the continental shelf (Fig. 117). In the coastal shelf *métier* A, the most important species were the spottail mantis shrimp and the red mullet, which have increased the percentage of landings during the last years. In the coastal shelf B, the spottail mantis shrimp was responsible for more than 25% of the landings. In the

Figure 116. Most important species in terms of landings percentage for the four métiers of the central zone of the Catalan coast during the period (2002-2021).

deeper shelf *métier* A, hake and the spottail mantis shrimp were the most landed species accounting for the 25% of the landings, separately. In the deeper shelf B, the most relevant species were mackerel, which landings decreased throughout the years, and hake together with *Ommastrephidae*, both with increasing landings over time.

The species composition and landings (kg) by port and by métier for the time series 2002 to 2020 are reported in Annex 3.

Figure 117. Most important species in terms of landings percentage for the four métiers of the south zone of the Catalan coast during the period (2002-2021).

Vessel Length composition

Figure 118 represents the total number of trips made by fishing vessels grouped in different Vessel Length (VL) categories in each *métier* for the north zone. In the coastal shelf *métier*, at the beginning of the time series, vessels from 18 to 24 meters represented around 50% of the trips. In recent years, though, the fleet was more variable with both bigger (VL 24-40 m) and smaller (VL 12-18 m) vessels present. For the deeper shelf *métier*, the number of trips with vessels from 18 to 24 m VL decreased but vessels from 12 to 18 m VL increased. This amount of trips with bigger vessels (VL 24-40 m) was constant until the last two years. Then, the trips with bigger vessels decreased as opposed to small vessels (VL 6 to 12 m), which increased. For the upper slope métier, vessels from 18-24 m and 24-40 m VL were more abundant and those from 12-18 m VL were still present but as a minority. Finally, the lower slope *métier* was characterized by having bigger vessels. The ones with a VL from 24 to 40 m represented about 50%.

Figure 119 represents amount of trips made by fishing vessels grouped in different VL categories in each *métier* for the center zone. For the coastal shelf *métier*, at the beginning of the time series, there was a little of each VL group. However, in recent years, the trips from vessels ranging from 12 to 18 m VL increased. In the deeper shelf *métier* there was a clear dominance of 12-18 m long vessels throughout the time series, followed by smaller vessels (VL 6 to 12 m) and with just a few of the largest ones. For the upper slope métier, the amount of trips from the different vessels' groups remained constant but in the last five years, the number of trips with vessels from 12 to 18 m VL increased. Finally, the lower slope *métier* was characterized by a great amount of trips with boats from 24 to 40 m VL followed by those from 18 to 24 m.

Figure 118. Vessel length (in meters) composition by métier for time series (2002-2021) for the OTB fleet in the North zone.

Figure 120 represents amount of trips made by fishing vessels grouped in different VL categories in each *métier* for the south zone. For the coastal shelf *métier* A, trips with boats from 12 to 18 m VL were dominant, also being abundant those from 18 to 24 m. On the coastal shelf *métier* B, early in the time series, 12-18 m vessels were dominant and those from 18 to 24 m increased. The case of the deeper shelf A *métier* is similar to the previous one, with a small increase in boats from 24 t o40 m VL. Finally, in the deeper shelf B *métier*, 12-18 m vessels were very scarce whereas those from 18 to 24 m VL were the most abundant and 24-40 m vessels considerably increased.

Number of vessels

Changes in the mean number of vessels fishing in each *métier* and their standard deviation for the time series (2002-2021) are shown in Figure 121. In general, all *métiers* present a decrease in number of vessels. This fact aligns with the reduction in the Catalan trawler fleet in the last 20 years, where the total number of vessels decreased by 42% since 2000 (ICATMAR, 2022-03).

Figure 119. Vessel length (in meters) composition by métier for time series (2002-2021) for the OTB fleet in the Center zone.

Among the four OTBs, the fleet of blue and red shrimp (OTB4) in the central zone had a greater interannual stability. The number of vessels for the coastal *métier* (OTB1A) in the south zone decreased less than in the other cases.

Changes in Landing Per Unit Effort (LPUE)

Changes in Landing Per Unit Effort (LPUE) in each *métier* and their standard deviation for the time series (2002-2021) are shown in Figure 122. Continental shelf *métiers* (OTB1, OTB2, OTB1A, OTB1B, OTB2A and OTB2B) had a higher LPUE than upper and lower slope *métiers* (OTB3 and OTB4). There was no clear intrannual trend with fluctuations throughout the time series.

Figure 120. Vessel length (in meters) composition by métier for time series (2002-2021) for the OTB fleet in the South zone.

Figure 121. Mean number and standard deviation of different vessels fishing on each métier and by zone for the time series (2002 – 2021).

Figure 122. Changes in Landing Per Unit Effort (LPUE) in each métier and their standard deviation by zone for the time series (2002-2021).

Spatial differentiation using VMS data

VMS data was used to spatially differentiate the fishing ground of each *métier* at the port level (Fig. 123, Fig. *124*, Fig. 125, Fig. *126* and Fig. *127*). Trips (day + vessel) by *métier* for the years 2019 and 2020 were crossed with VMS data to represent the *métiers* distribution across the Catalan coast.

Figure 123. Spatial distribution of otter trawl fishery VMS, colours represents the different OTBs metiers identified for the catalan fishery.

Figure 124. Spatial distribution of coastal shelf metiers trawl otter fishery VMS. Colours represent the different coastal shelf identified: OTB1; noth and center coast, OTB1A; south A and OTB1B; south B.

Figure 125. Spatial distribution of deeper shelf metiers trawl otter fishery VMS. Colours represents the different metiers identified: OTB2; north and central coast, OTB2A; south A and OTB2B; south B.

Figure 126. Spatial distribution of upper slope (north and central coast) metiers (OTB3) trawl otter fishery VMS.

Figure 127. Spatial distribution of lower slope (north and central coast) metiers (OTB4) trawl otter fishery VMS.

Main results and next steps

After the characterization of the Catalan fishing fleet for the bottom-trawl fishery case study, six different *métiers* were identified. Moreover, no slope *métiers* were found in the south of Catalonia. Most of *métiers* changed along the time series. Similarly, the importance of the spatial distribution among *métiers* changed inter and intra zones. The contribution of the mullets. in OTB1 and the Norway lobster in OTB 3 increased. However, the hake in OTB 2 decreased, and the blue and red shrimp in OTB4 remained constant along the time series. Our findings provided additional support to implement Article 11 related to spatial closures and Article 7 related to fishing effort.

The next steps will be to calculate the contribution of each *métier* for each port, to explore how it changes along the coast and also intra-year (by month), and, finally, to conduct a Productivity and Susceptibility Analysis (PSA) to identify vulnerability among zones. Importantly, this study should be useful to provide management recommendations at a spatial level for each *métier*.

References

Albo-Puigserver, M., Pennino, M.G., Bellido, J.M., Colmenero, A.I., Giráldez, A., Hidalgo, M., Gabriel Ramírez, J., Steenbeek, J., Torres, P., Cousido-Rocha, M., Coll, M., 2021. Changes in Life History Traits of Small Pelagic Fish in the Western Mediterranean Sea. Front. Mar. Sci. 8, 1–21. https://doi.org/10.3389/fmars.2021.570354

Clavel-Henry, M., Solé, J., Bahamon, N., Carretón, M., Company, J.B., 2021. Larval transport of *Aristeus antennatus* shrimp (Crustacea: Decapoda: Dendrobranchiata: Aristeidae) near the Palamós submarine canyon (NW Mediterranean Sea) linked to the North Balearic Front. Prog. Oceanogr. 192. https://doi.org/10.1016/j.pocean.2021.102515

EU, 2022. COMMISSION IMPLEMENTING REGULATION (EU) 2022/92 of 21 January 2022 laying down rules for the application of Directive (EU) 2019/883 of the European Parliament and of the Council as regards monitoring data methodologies and the format for reporting passive.

EU, 2010. COMMISSION DECISION of 18 December 2009 adopting a multiannual Community programme for the collection, management and use of data in the fisheries sector for the period 2011-2013.

EU, 2008. Commission Decision of 6 November 2008 adopting a multiannual Community programme pursuant to Council Regulation (EC) No 199/2008 establishing a Community framework for the collection, management and use of data in the fisheries sector and support for science.

Hintzen, N.T., Piet, G.J., Brunel, T., 2010. Improved estimation of trawling tracks using cubic Hermite spline interpolation of position registration data. Fish. Res. 101, 108–115. https://doi. org/10.1016/j.fishres.2009.09.014

ICATMAR, 2022. Evolució de les captures i els preus de venda del sector pesquer a Catalunya: comparativa 2020-2021 (ICATMAR 22-03). 120 pp. Barcelona.

ICATMAR, 2021. State of Fisheries in Catalonia 2020 Part 1: Methods and Results (ICATMAR, 21-02) 2020, 519 pp. Barcelona

ICATMAR, 2020. Distribució Geogràfica de l'Esforç Pesquer i Captures de la Flota d'Encerclament Catalana (ICATMAR, 20-02). 23 pp. Barcelona.

Lee, J., South, A.B., Jennings, S., 2010. Developing reliable, repeatable, and accessible methods to provide high-resolution estimates of fishing-effort distributions from vessel monitoring system (VMS) data. ICES J. Mar. Sci. 67, 1260–1271. https://doi.org/10.1093/icesjms/fsq010

Massutí, E., Renones, O., 2005. Demersal resource assemblages in the trawl fishing grounds off the Balearic Islands (western Mediterranean). Sci. Mar. 69, 167–181. https://doi.org/10.3989/ scimar.2005.69n1167

ORDRE ACC/155/2021, de 20 de juliol, per la qual s'aprova el Pla de gestió de la modalitat de la sonsera al litoral català (2021-2026)., 2021.

ORDRE ARP/222/2020, de 18 de desembre, per la qual s'aprova el Pla de gestió del pop roquer (Octopus vulgaris) del litoral de la Catalunya Central capturat amb cadups i nanses., 2020.

Osio, G.C., Orio, A., Millar, C.P., 2015. Assessing the vulnerability of Mediterranean demersal stocks and predicting exploitation status of un-assessed stocks. Fish. Res. 171, 110–121. https://doi.org/10.1016/j.fishres.2015.02.005

Ramon, M., 1989. On diversity and connectivity, as historical expressions of ecosystems. Coenoses 4, 121–126.

Russo, T., D'Andrea, L., Parisi, A., Cataudella, S., 2014. VMSbase: An R-Package for VMS and logbook data management and analysis in fisheries ecology. PLoS One 9. https://doi.org/10.1371/ journal.pone.0100195

Russo, T., Parisi, A., Cataudella, S., 2011. New insights in interpolating fishing tracks from VMS data for different métiers. Fish. Res. 108, 184–194.

Shepperson, J.L., Hintzen, N.T., Szostek, C.L., Bell, E., Murray, L.G., Kaiser, M.J., 2018. A comparison of VMS and AIS data: The effect of data coverage and vessel position recording frequency on estimates of fishing footprints. ICES J. Mar. Sci. 75, 988–998. https://doi.org/10.1093/icesjms/ fsx230

Annex 1 Catch composition for bottom trawling in 2019, 2020 and 2021

	Shall	Shallow Contin		al shelf	Uppers	slope	Lower slope		
	continent	al shelf		05		05		05	
Actinontorygii	mean	SE	mean	SE	mean	SE	mean	SE	
Actinopterygn	1.01	0.09	2 2 2	2.27	_	_		_	
Alusa Tallax	1.01	1 15	5.55 2.47	1 07					
Citharua linguatula	9.40	2.14	2.47	0.72	0.01	0.01			
Cilitatus ilityualula	0.40	2.11	3.97 0.65	0.72	0.01	0.01	2.25	0.76	
	0.17	0.10	0.05	1.10	2.00	0.04	2.30	0.70	
Euligia guinaluus	0.05	0.20	4.01	1.19	0.02	1.01	2 17	0.00	
			2.70	1.51	7.10	1.91	0.60	0.90	
	7 7 4	7 5 2	4.00	1.52	7.10	1.40	0.69	0.20	
	7.74	2.50	EQ 11	0 1 0	11 10	2 50	1.67	0.72	
Lophius budegassa	7.09	2.09	22.11	0.10	10.04	3.39	1.07 5.64	0.72	
Lophus piscatonus	0.54	0.30	2.00	1.00	12.04	5.70	0.04	2.73	
Menuccius menuccius	21.40	0.40	43.18	5.93	30.24	5.20	0.92	3.10	
	40.44	4.0.4	1.44	0.98	23.87	7.04	9.28	4.02	
Mullus parpatus	10.44	4.94	39.32	0.07	0.49	0.18	0.02	0.02	
	2.40	1.45	5.55	1.92	0.01	0.40	0.53	0.52	
Pagellus acame	7.03	4.20	0.00	0.04			0.11	0.10	
Pagellus erythinus	20.33	0.02	1.45	0.49	70.00	00.00	0.11	0.10	
Phycis blenholdes	0.03	0.03	7.09	1.78	76.06	22.20	28.75	8.39	
Scomber collas	9.19	3.64	2.32	1.49	0.04	0.03			
Scomper scomprus	4.58	1.30	1.36	0.62	4.00	0.05	4 40	0.74	
Scorpaena elongata	0.01	0.01	3.13	1.45	1.60	0.65	1.40	0.71	
Sparus aurata	6.89	4.31							
Spnyraena spnyraena	24.36	11.13	40.50	0.47					
Trachurus mediterraneus	27.80	11.22	13.53	9.17					
Trachurus picturatus	0.50	5.00	16.07	11.16	4.40	0.04	0.00	0.00	
Trachurus trachurus	8.56	5.22	109.59	33.05	4.12	3.61	0.06	0.06	
Trigla lyra			2.04	0.73	3.50	0.96	0.97	0.88	
Trisopterus capelanus	9.33	3.66	27.82	4.86	0.11	0.05	0.08	0.05	
Chondrichtys			_			4.0.4	7.00		
Galeus melastomus					2.09	1.34	7.88	2.86	
Scyliorhinus canicula	0.12	0.12	14.85	11.34	12.89	6.29	2.69	1.51	
Crustacea			_						
Aristeus antennatus		4 50			0.25	0.14	81.05	9.42	
Liocarcinus depurator	3.69	1.53	4.45	2.25	0.25	0.13	0.00	0.00	
Nephrops norvegicus	0.46	0.44	0.38	0.24	63.96	11.32	2.45	0.78	
Parapenaeus longirostris	2.84	1.00	6.70	1.97	21.17	6.05	1.06	0.46	
Squilla mantis	21.67	4.37	1.64	0.47		_	_	_	
Cephalopoda			_		_				
Alloteuthis spp.	4.03	0.79	2.73	1.01					
Eledone cirrhosa	7.22	2.94	21.43	2.96	18.21	4.90	1.13	0.71	
Illex coindetii	8.68	3.32	23.51	3.04	1.46	0.28	0.42	0.20	
Octopus vulgaris	2.85	1.73	6.35	1.98	0.11	0.11	0.40	0.39	
Todarodes sagittatus			0.06	0.06	5.22	1.19	1.04	0.37	
Other invertebrates									
Parastichopus regalis			4.55	2.28	0.12	0.09	0.04	0.04	

Table 15. Landed species with higher biomass for 2019. SE: standard error.

	Shallow C		Continen	tal shelf	Upper	slope	Lower	Lower slope mean SE 36.15 11.79 16.48 5.10 2.34 0.95 20.71 6.20 105.06 48.84 0.29 0.29 0.52 0.45 304.87 87.80 0.59 0.58 11.69 10.76 1.66 1.08 14.34 8.25	
	continen	tal shelf	And Deck March Andrew Addres	0.5					
Actinontemati	mean	SE	mean	SE	mean	SE	mean	SE	
Acunopterygii	400.40	00.50	44.40	40.70				_	
Amogiossus laterna	106.16	32.58	41.16	16.78					
Cepola macrophthalma	24.21	8.35	83.79	52.45					
Chelidonichthys cuculus	1.96	1.91	88.11	43.24					
Citharus linguatula	305.22	83.87	101.06	21.58	0.26	0.25			
Engraulis encrasicolus			104.01	48.40					
Eutrigia gurnardus	21.53	8.82	120.02	36.39	0.28	0.28			
Helicolenus dactylopterus			78.53	36.96	115.37	31.18	36.15	11.79	
Lepidorhombus boscii			84.24	23.27	229.49	76.55	16.48	5.10	
Lepidotrigla cavillone	48.43	24.62	111.13	31.89					
Lepidotrigla dieuzeidei	8.67	8.43	80.37	33.77					
Lophius budegassa	22.49	9.29	133.00	20.13	22.76	6.63	2.34	0.95	
Merluccius merluccius	147.72	48.53	346.73	47.07	127.61	32.91	20.71	6.20	
Micromesistius poutassou			43.19	27.66	231.82	67.33	105.06	48.84	
Mullus barbatus	423.47	139.63	612.39	93.16	6.53	2.17	0.29	0.29	
Pagellus erythrinus	338.65	159.34	13.93	4.98			0.52	0.45	
Phycis blennoides	0.46	0.45	123.54	33.87	1 023.11	269.35	304.87	87.80	
Sardina pilchardus	194.30	188.83	7.89	7.78					
Serranus hepatus	37.87	14.06	58.21	24.71					
Trachurus mediterraneus	293.54	105.01	253.47	159.57					
Trachurus picturatus			108.41	76.62					
Trachurus trachurus	121.15	86.71	2 233.85	641.28	14.97	13.13	0.59	0.58	
Trigla lyra			78.24	30.39	106.39	31.52	11.69	10.76	
Trisopterus capelanus	314.40	138.42	828.37	127.81	1.68	0.81	1.66	1.08	
Chondrichtys									
Scyliorhinus canicula	0.70	0.68	105.65	89.68	70.43	36.19	14.34	8.25	
Crustacea							_		
Aristeus antennatus					10.00	5.57	4 711.51	488.57	
Liocarcinus depurator	528.32	194.37	569.83	238.78	20.93	10.23	0.32	0.32	
Macropipus tuberculatus			21.21	11.22	172.30	45.94	10.47	5.09	
Nephrops norvegicus	7.25	6.80	6.02	4.67	2 846.31	499.59	91.40	28.75	
Parapenaeus longirostris	351.42	130.47	1 095.4	403.29	1 740.38	529.19	80.68	35.59	
Pasiphaea multidentata					5.18	2.07	537.14	123.10	
Penaeus kerathurus	386.11	173.08	0.18	0.18					
Plesionika edwardsii					92.56	89.28	58.15	55.81	
Plesionika heterocarpus			50.14	49.48	117.49	77.07	13.14	7.32	
Plesionika martia					90.80	26.96	131.23	29.02	
Squilla mantis	831.30	129.12	76.00	27.11			_		
Cephalopoda									
Alloteuthis spp.	114.60	28.34	98.69	39.47					
Eledone cirrhosa	29.63	10.35	101.33	13.07	61.00	13.04	4.59	2.94	
Illex coindetii	164.44	48.57	479.06	59.63	21.57	4.67	9.57	4.57	
Sepia orbignyana	0.66	0.46	91.69	22.60	0.97	0.51			
Other invertebrates									
Bolinus brandaris	405.98	129.24	24.94	21.90					
		and the second sec							

Table 16. Landed species with higher abundance for 2019. SE: standard error.

	Shal continent	low al shelf	Continent	al shelf	Upper	slope	Lower	slope
	mean	SE	mean	SE	mean	SE	mean	SE
Actinopterygii								
Amoglossus latema	2.11	0.57	1.46	0.47	0.01	0.01		
Boops boops	30.68	14.89	35.48	13.49	0.05	0.03		
Capros aper	0.07	0.05	3.71	1.48	0.59	0.44	0.03	0.02
Coelorinchus caelorhincus					2.44	1.35	2.03	1.15
Conger conger			0.27	0.19	1.77	0.63	0.55	0.25
Diplodus annularis	3.74	2.42						
Engraulis encrasicolus	37.45	26.49	19.87	8.80			<0.00	<0.00
Helicolenus dactylopterus			0.58	0.36	0.71	0.19	0.33	0.22
Hoplostethus mediterrane	us				0.01	<0.00	1.69	1.41
Lampanyctus crocodilus					0.32	0.20	2.79	0.92
Lepidorhombus boscii			0.27	0.11	2.59	0.99	0.11	0.04
Lophius budegassa	1.06	0.53	3.49	1.07	0.55	0.20	0.04	0.02
Merluccius merluccius	1.90	0.73	5.76	1.00	0.06	0.03	0.09	0.07
Micromesistius poutassou			2.06	1.16	0.49	0.45	0.02	0.02
Mola mola							3.80	3.74
Pagellus bogaraveo			1.15	0.50	0.79	0.67	0.25	0.16
Phycis blennoides			0.46	0.19	1.26	0.27	0.21	0.06
Sardina pilchardus	16.53	7.83	1.72	1.05				
Sardinella aurita	20.42	9.08	0.03	0.02				
Spicara flexuosa	1.43	0.47	6.95	2.25	0.35	0.17	0.01	0.01
Spicara maena	2.32	1.27	1.72	0.66	0.16	0.11		
Sprattus sprattus	2.74	2.00	0.03	0.02				
Trachurus mediterraneus	11.20	6.41	5.78	2.89				
Trachurus picturatus			4.77	4.54	0.89	0.84		
Trachurus trachurus	5.55	4.61	22.39	17.39	1.14	0.53	0.10	0.10
Trachyrincus scabrus			0.01	0.01	0.51	0.20	2.09	0.91
Trisopterus capelanus	1.35	0.96	3.47	1.46	0.05	0.02		
Chondrichtys								
Galeus melastomus			0.01	0.01	4.78	1.07	5.37	1.17
Scyliorhinus canicula	<0.00	<0.00	55.09	17.18	41.51	11.84	8.30	6.19
Crustacea				÷				
Dardanus arrosor	0.34	0.11	1.07	0.27	0.68	0.28	0.48	0.36
Liocarcinus depurator	5.03	2.71	4.31	2.76	0.05	0.02	<0.00	<0.00
Squilla mantis	5.29	1.10	0.50	0.17	<0.00	<0.00		
Cephalopoda								
Illex coindetii	0.11	0.05	1.63	0.61	0.56	0.16	0.18	0.07
Octopus salutii			0.44	0.31	4.20	2.24	0.02	0.02
Octopus vulgaris	2.02	1.07	1.63	0.66	0.14	0.14		
Other invertebrates								
Alcyonium palmatum	0.20	0.06	4.97	1.34	1.42	0.98	0.03	0.02
Calliactis parasitica	0.06	0.03	1.24	0.29	0.23	0.08	0.04	0.02
Astropecten irregularis	3.66	0.83	4.41	1.58	0.15	0.04	0.02	0.01
Echinus melo			6.65	3.83			1.31	1.18
Diazona violacea			3.42	1.44	0.04	0.03		

Table 17. Discarded species with higher biomass for 2019. SE: standard error.

	Shall continent	ow al shelf	Continent	al shelf	Upper s	slope	Lower s	lope
	mean	SE	mean	SE	mean	SE	mean	SE
Natural debris				4				
Codium bursa	0.44	0.21	0.31	0.18	0.17	0.16		
Codium tomentosum					<0.00	<0.00		
Marine organic debris	8.72	2.10	10.44	2.32	4.57	0.67	1.46	0.43
Marine plants	3.56	0.62	1.74	0.46	0.70	0.14	0.28	0.14
Other marine algae	0.03	0.02	0.09	0.08	0.08	0.06	<0.00	<0.00
Rhodophyta					<0.00	<0.00		
Shell	3.39	0.68	6.12	1.08	4.16	1.64	0.86	0.53
Terrestrial animals	0.05	0.03	<0.00	<0.00	0.04	0.04	0.05	0.04
Terrestrial plants	35.10	28.29	7.76	3.22	2.72	0.85	0.49	0.24
Marine litter	-							
Chalk debris	0.02	0.02	4.61	2.79	0.45	0.41	0.11	0.11
Cigarette stubs	<0.00	<0.00	<0.00	<0.00				
Coal	0.30	0.11	2.30	0.69	1.83	0.31	2.81	2.27
Fishing gear	0.03	0.02	0.69	0.62	0.11	0.06	0.15	0.07
Glass / Ceramics	0.60	0.53	0.01	0.01	0.54	0.22	0.02	0.02
Lumber	5.73	3.11	4.63	1.10	1.39	0.48	2.06	1.10
Metal	0.19	0.08	0.05	0.03	0.01	0.01	0.01	0.01
Plastic	1.94	0.68	2.62	0.60	2.55	0.55	1.73	0.70
Ropes	0.18	0.07	0.05	0.02	0.06	0.02	0.06	0.04
Textiles	0.04	0.04	0.78	0.36	0.68	0.28	0.07	0.04
Wet wipes			0.39	0.14	0.86	0.43	0.17	0.08
Unclassified debris			0.19	0.12	0.04	0.02	0.12	0.11

Table 18. Items from the debris fraction with higher mass for 2019. SE: standard error.

	Shall continent	ow al shelf	Continent	al shelf	Upper :	slope	Lower	slope
	mean	SE	mean	SE	mean	SE	mean	SE
Actinopterygii								
Centrolophus niger					3.92	2.64	0.23	0.17
Chelidonichthys lucerna	4.71	1.67	1.08	0.24				
Citharus linguatula	7.97	2.85	4.35	0.91	0.07	0.04		
Conger conger	1.24	0.28	0.58	0.23	1.64	0.33	2.84	1.03
Eutrigla gurnardus	0.30	0.24	3.26	1.05				
Helicolenus dactylopterus			0.11	0.05	5.55	2.08	0.42	0.17
Lepidorhombus boscii			3.49	0.81	7.85	1.57	0.45	0.14
Lophius budegassa	4.58	1.94	41.38	5.68	5.02	2.01	3.04	2.37
Lophius piscatorius			5.77	4.42	1.42	1.07	2.60	1.85
Merluccius merluccius	19.06	6.75	32.84	3.80	15.08	2.15	5.45	1.48
Micromesistius poutassou			0.01	0.01	37.39	16.96	4.63	1.20
Mugil cephalus	8.49	8.13						
Mullus barbatus	14.80	3.18	36.04	6.80	0.29	0.19	0.01	0.01
Mullus sumuletus	1.84	0.61	9.55	4.83	0.43	0.40	0.02	0.02
Pagellus erythrinus	19.45	11.81	7.12	2.84	0.14	0.11		
Phycis blennoides			3.08	1.32	79.89	40.60	20.92	4.26
Scomber scombrus	9.38	2.84	5.84	4.26				
Sparus aurata	23.44	18.61						
Sphyraena sphyraena	14.75	7.67						
Trachinus draco	2.40	0.74	4.07	1.23				
Trachurus mediterraneus	25.63	7.89	0.45	0.34				
Trachurus trachurus	4.03	2.31	82.21	25.87	0.98	0.68	0.11	0.11
Trigla lyra			0.90	0.44	2.85	0.87		
Trisopterus capelanus	6.29	2.06	18.36	3.65	0.02	0.02	0	
Chondrichtys								
Galeus melastomus					0.23	0.22	7.34	3.30
Scyliorhinus canicula			8.86	5.44	23.12	9.27	2.85	1.83
Crustacea								
Aristeus antennatus					0.35	0.22	74.97	6.38
Liocarcinus depurator	10.68	8.19	3.01	2.02	0.04	0.04		
Nephrops norvegicus	0.44	0.20	0.35	0.23	46.71	6.88	3.18	0.87
Parapenaeus longirostris	7.13	2.42	13.14	3.42	33.03	7.34	1.10	0.48
Paromola cuvieri					0.33	0.33	3.71	2.61
Pasiphaea multidentata					0.03	0.02	5.07	1.14
Squilla mantis	26.86	7.28	3.08	1.57				
Cephalopoda								
Alloteuthis spp.	5.90	1.39	0.75	0.29			0.10	0.10
Eledone cirrhosa	12.39	3.44	20.03	3.61	10.29	3.20	1.65	0.70
Illex coindetii	6.72	2.81	28.52	8.32	4.90	1.59	0.31	0.23
Octopus vulgaris	4.53	2.79	2.49	0.93	0.21	0.21		
Sepia officinalis	5.81	2.63	0.24	0.24				
Todarodes sagittatus					1.69	0.46	1.76	0.75
Other invertebrates								
Parastichopus regalis	0.24	0.23	8.47	3.32				

Table 19. Landed species with higher biomass for 2020. SE: standard error.

	Shal continen	low tal shelf	Continen	tal shelf	Upper	slope	Lower	slope
	mean	SE	mean	SE	mean	SE	mean	SE
Actinopterygii								
Argentina sphyraena			104.92	79.01	5.03	2.50		
Amoglossus latema	136.48	52.28	52.45	20.07				
Cepola macrophthalma	24.84	12.81	52.60	26.38	0.69	0.49		
Citharus linguatula	316.35	99.98	127.27	25.96	1.43	0.73		
Eutrigla gurnardus	13.20	10.19	96.90	37.75				
Helicolenus dactylopterus			3.63	1.80	92.80	33.37	3.27	1.17
Lepidorhombus boscii			67.64	17.09	189.32	41.88	7.19	1.45
Lepidotrigla cavillone	34.24	11.27	119.37	47.21				
Lophius budegassa	7.13	2.70	100.66	14.96	9.79	3.28	1.82	0.89
Merluccius merluccius	206.25	74.95	275.73	48.69	57.89	9.36	11.26	2.98
Micromesistius poutassou			0.21	0.21	366.10	135.48	38.57	9.12
Mullus barbatus	326.00	90.12	695.00	136.04	4.38	3.02	0.09	0.09
Mullus sumuletus	32.06	8.60	115.06	64.90	2.72	2.42	0.20	0.19
Pagellus erythrinus	230.48	137.60	83.65	31.75	1.49	1.23		
Phycis blennoides			63.48	32.73	631.81	111.36	179.33	34.68
Scomber scombrus	96.12	29.89	88.41	70.56				
Serranus hepatus	27.45	11.50	138.74	93.13				
Sparus aurata	169.98	137.70						
Trachinus draco	46.79	14.49	50.00	14.32				
Trachurus mediterraneus	357.84	124.11	10.32	9.01				
Trachurus trachurus	91.80	51.05	2 022.27	631.62	7.00	4.79	0.44	0.43
Trigla lyra			34.76	22.12	88.25	32.17		
Trisopterus capelanus	196.90	54.65	622.56	121.91	0.46	0.45		
Chondrichtys								
Scyliorhinus canicula			46.25	27.69	130.16	52.98	12.95	8.36
Crustacea								
Aristeus antennatus					14.43	8.56	3 909.95	358.38
Liocarcinus depurator	1221.37	966.75	288.86	198.04	2.74	2.21		
Nephrops norvegicus	4.58	1.96	6.92	4.66	2 035.42	323.34	123.28	47.49
Parapenaeus longirostris	1082.79	423.05	1794.09	467.36	3 160.02	841.12	80.85	36.18
Pasiphaea multidentata					4.17	2.93	741.27	153.42
Penaeus kerathurus	220.97	131.10						
Plesionika heterocarpus			5.04	4.95	93.80	46.13	1.93	1.28
Plesionika martia					88.78	56.82	249.37	52.61
Squilla mantis	869.31	216.06	120.62	66.61		_		_
Cephalopoda								
Alloteuthis spp.	160.87	36.85	20.54	8.31			0.21	0.20
Eledone cirrhosa	48.19	13.88	121.49	24.41	46.95	16.25	5.04	2.37
Illex coindetii	275.13	148.53	826.09	223.94	100.71	49.87	2.38	1.32
Sepia elegans	58.44	35.02	39.18	16.46	0.28	0.27		
Sepia orbignyana	0.48	0.46	92.71	25.45	4.24	2.05		
Other invertebrates								
Parastichopus regalis	1.81	1.73	68.18	26.73				
Bolinus brandaris	171.80	42.26	1.27	0.59				

Table 20. Landed species with higher abundance for 2020. SE: standard error.

	Shall continent	ow al shelf	Continent	al shelf	Upper	slope	Lower	slope
	mean	SE	mean	SE	mean	SE	mean	SE
Actinopterygii								
Argentina sphyraena			2.06	1.90	0.01	0.01		
Amoglossus latema	2.50	0.87	1.15	0.53	0.01	0.01	0.01	0.01
Boops boops	9.10	3.85	44.59	16.17	0.13	0.12		
Capros aper	0.02	0.01	10.48	7.64	0.70	0.36	<0.00	<0.00
Conger conger			0.34	0.28	2.27	1.14	0.86	0.31
Engraulis encrasicolus	36.57	24.28	8.52	5.46				
Gadiculus argenteus			0.06	0.06	2.87	1.39	0.05	0.03
Lophius budegassa			4.91	2.38	0.51	0.21		
Macroramphosus scolopax	()		16.08	15.53	0.01	0.01		
Merluccius merluccius	7.92	3.30	10.62	1.92	0.36	0.10	0.06	0.06
Mola mola			6.24	5.58				
Pagellus acarne	13.68	12.04	0.09	0.07				
Pagellus bogaraveo			5.31	3.47	0.39	0.26	0.12	0.12
Phycis blennoides			0.65	0.61	1.75	0.54	0.49	0.17
Sardina pilchardus	17.09	8.73	0.27	0.13	0.01	0.01		
Sardinella aurita	42.59	28.70						
Spicara flexuosa	10.78	5.93	14.06	4.99	0.13	0.10		
Spicara maena	4.47	2.21	7.08	4.94			0.01	0.01
Trachurus mediterraneus	9.23	3.04			<0.00	<0.00		
Trachurus trachurus	5.65	3.88	15.23	3.93	1.16	0.89	0.14	0.12
Trachyrincus scabrus					0.02	0.01	2.27	0.85
Trisopterus capelanus	1.52	0.93	2.51	1.40	0.03	0.03		
Chondrichtys								
Etmopterus spinax					0.13	0.04	2.26	1.29
Galeus melastomus					3.65	1.47	19.63	7.90
Raja spp.			3.31	3.23	0.01	0.01		
Scyliorhinus canicula			30.58	7.83	49.86	13.32	11.53	3.60
Crustacea								
Dardanus arrosor	0.58	0.24	1.48	0.60	0.46	0.15	0.04	0.02
Parapenaeus longirostris	0.54	0.26	1.36	0.50	0.52	0.13	0.02	0.01
Plesionika heterocarpus			19.17	18.72	0.57	0.23	<0.00	<0.00
Squilla mantis	4.38	2.24	0.36	0.24				
Cephalopoda								
Histioteuthis bonnellii					0.24	0.22	2.13	1.09
Illex coindetii	0.40	0.24	1.95	0.35	0.57	0.16	0.32	0.14
Octopus salutii	0.19	0.18	0.40	0.40	1.80	1.03	0.30	0.20
Octopus vulgaris	3.31	1.53	0.59	0.30		_		
Other invertebrates								
Alcyonium palmatum	0.50	0.21	4.17	1.44	0.43	0.17	0.06	0.04
Astropecten irregularis	4.06	1.70	2.91	1.14	0.09	0.03	0.02	0.01
Echinus melo			14.23	8.90			<0.00	<0.00
Gracilechinus acutus			6.54	6.42				
Leptometra phalangium			60.41	50.54	0.03	0.03		
Neopycnodonte cochlear			2.27	1.57	0.16	0.12	<0.00	<0.00

Table 21. Discarded species with higher biomass for 2020. SE: standard error.

	Shallow continental shelf		Continent	al shelf	Upper slope		Lower slope	
	mean	SE	mean	SE	mean	SE	mean	SE
Natural debris								
Codium bursa	3.77	3.07	1.29	0.69	0.05	0.05		
Codium tomentosum	0.04	0.03						
Marine organic debris	13.27	3.34	7.03	1.12	7.79	4.36	1.72	0.42
Marine plants	20.11	10.43	3.57	1.33	0.60	0.23	0.37	0.15
Other marine algae	0.08	0.05	0.03	0.02	0.03	0.02	0.01	0.01
Rhodophyta	<0.00	<0.00	0.02	0.02				
Shells	11.09	2.49	5.90	1.17	3.37	1.65	0.34	0.16
Terrestrial plants	11.55	2.27	17.73	3.67	11.95	3.55	3.07	0.97
Marine litter								
Chalk debris	0.44	0.42	0.48	0.27	0.11	0.07	0.05	0.03
Cigarette stubs					0.01	0.01		
Coal	1.59	0.66	5.02	3.01	2.43	0.60	1.08	0.47
Fishing gear	3.51	3.35	0.10	0.05	0.06	0.04	0.14	0.11
Glass / Ceramics	1.83	1.75	0.47	0.46	0.70	0.57	0.12	0.08
Lumber	0.67	0.47	3.37	1.12	0.93	0.89	0.18	0.10
Metal			0.80	0.45	0.14	0.10	0.03	0.03
Plastic	0.72	0.24	6.13	2.39	2.43	0.88	0.66	0.17
Ropes	0.14	0.08	0.26	0.19	0.06	0.03	0.05	0.02
Rubber	-		0.11	0.10	0.41	0.35	0.01	0.01
Textiles	0.01	0.01	1.13	1.08	0.22	0.09	1.16	0.92
Wet wipes	0.07	0.05	10.80	6.57	2.46	1.00	2.82	1.46
Unclassified debris	0.03	0.03	0.13	0.08	0.08	0.04	0.05	0.04

Table 22. Items from the debris fraction with higher mass for 2020. SE: standard error.

	Shall continent	low al shelf	Continent	al shelf	Upper	slope	Lower	slope
	mean	SE	mean	SE	mean	SE	mean	SE
Actinopterygii								
Boops boops	11.01	5.45	2.77	1.81				
Citharus linguatula	7.74	2.92	3.58	0.69				
Conger conger	1.40	0.40	0.23	0.10	2.78	0.72	1.44	0.29
Helicolenus dactylopterus			2.19	1.33	13.49	3.78	2.24	1.32
Lepidorhombus boscii			2.73	0.93	8.35	1.46	1.00	0.51
Lithognathus mormyrus	8.14	4.85						
Lophius budegassa	4.44	3.58	29.04	5.63	9.87	3.23	1.77	1.38
Lophius piscatorius	2.56	2.30	0.80	0.56	8.00	5.11	5.46	2.76
Merluccius merluccius	17.28	4.30	44.96	6.39	15.18	2.16	7.03	1.46
Micromesistius poutassou			0.24	0.13	25.08	5.33	2.45	0.54
Mullus barbatus	15.73	6.84	47.44	12.27	0.65	0.43		
Mullus sumuletus	4.55	1.53	7.30	3.50	0.70	0.26		
Pagellus erythrinus	19.46	10.31	3.17	1.39			0.04	0.03
Phycis blennoides	0.03	0.02	5.33	1.82	67.77	19.89	28.20	4.33
Scomber scombrus	12.00	5.68	4.39	1.32				
Scorpaena elongata	0.10	0.04	4.00	2.42	1.06	0.50	0.65	0.37
Sphyraena sphyraena	6.20	5.97						
Trachinus draco	1.45	0.59	3.22	0.95				
Trachurus mediterraneus	5.42	2.39	7.09	6.51			0.03	0.02
Trachurus trachurus	19.68	6.22	60.17	25.30	2.16	0.93		
Trigla lyra			0.94	0.37	2.48	0.77	0.58	0.40
Trisopterus capelanus	7.08	2.42	9.56	2.08				
Chondrichtys								
Galeus melastomus					0.35	0.24	24.91	8.03
<i>Raja</i> spp.	1.74	0.92	1.56	1.10	0.01	0.01		
Scyliorhinus canicula			2.86	1.82	5.39	3.04	0.11	0.11
Crustacea								
Aristeus antennatus							63.22	9.49
Geryon longipes	1.40.000						3.19	0.94
Liocarcinus depurator	8.29	4.70	4.08	2.52	0.01	0.01		
Nephrops norvegicus	0.47	0.30	0.39	0.12	35.20	5.67	3.05	1.95
Parapenaeus longirostris	8.18	2.67	22.47	6.60	31.35	6.95	3.64	2.21
Penaeus kerathurus	6.00	2.42	0.0000000					
Squilla mantis	30.10	4.79	2.67	1.12	_	_		_
Cephalopoda					_		_	-
Alloteuthis spp.	5.19	1.66	0.52	0.31				
Eledone cirrhosa	6.24	2.30	16.82	2.67	14.24	4.10	1.87	0.73
Illex coindetii	14.75	5.01	43.19	8.98	7.53	2.44	1.21	0.69
Loligo vulgaris	3.57	1.14	1.35	0.52		_		
Octopus vulgaris	7.53	4.04	2.10	0.72				
Sepia officinalis	6.32	2.30	0.42	0.31				
Todarodes sagittatus			0.09	0.08	2.48	0.44	2.37	0.62
Other invertebrates								
Parastichopus regalis	0.12	0.08	5.37	2.91				

Table 23. Landed species with higher biomass for 2021. SE: standard error.

	Shal continen	low tal shelf	Continen	tal shelf	Upper	slope	Lower	slope
	mean	SE	mean	SE	mean	SE	mean	SE
Actinopterygii								
Argentina sphyraena			89.82	45.07	4.44	2.29	0.17	0.16
Amoglossus latema	87.52	28.81	40.66	14.69				
Boops boops	192.07	91.79	43.67	29.07				
Citharus linguatula	243.90	88.07	114.23	25.33				
Engraulis encrasicolus			110.36	91.68				
Eutrigla gurnardus	84.56	40.51	86.58	49.87				
Helicolenus dactylopterus			53.14	25.59	178.85	43.71	29.87	18.33
Lepidorhombus boscii			47.13	12.74	191.45	36.68	16.30	8.80
Lepidotrigla cavillone	53.78	36.04	115.21	44.06				
Lophius budegassa	17.38	14.72	75.40	14.79	17.02	4.62	0.95	0.46
Merluccius merluccius	224.16	75.13	549.86	115.26	87.84	13.73	19.74	5.09
Micromesistius poutassou			3.48	1.56	256.82	59.04	19.70	5.22
Mullus barbatus	407.63	229.64	828.09	223.15	9.84	6.45		
Mullus surmuletus	56.83	18.52	98.66	51.40	4.01	1.59		
Pagellus erythrinus	244.69	125.54	35.60	15.27			0.46	0.45
Phycis blennoides	0.70	0.67	77.93	20.20	909.25	157.06	250.77	41.84
Sardina pilchardus	230.91	208.93	10.33	7.56				
Scomber scombrus	121.74	62.08	35.24	10.51				
Serranus hepatus	29.46	11.76	51.49	17.84				
Trachurus mediterraneus	79.52	38.25	156.15	135.59			0.21	0.21
Trachurus trachurus	291.92	81.16	1 183.9	468.19	17.74	7.19		
Trigla lyra			30.55	8.81	60.27	17.33	7.18	4.72
Trisopterus capelanus	252.37	92.81	352.89	82.91				
Crustacea								
Aristeus antennatus							3 697.78	533.99
Liocarcinus depurator	934.05	584.18	445.53	290.70	0.69	0.68		
Macropipus tuberculatus			2.90	2.47	99.72	52.98		
Nephrops norvegicus	4.64	3.31	5.16	1.82	1 653.17	310.07	112.05	76.56
Parapenaeus longirostris	910.22	247.15	2 687.74	755.25	2 743.05	673.46	231.48	121.56
Pasiphaea multidentata					4.63	3.06	352.21	80.52
Penaeus kerathurus	263.34	111.29						
Plesionika edwardsii					128.19	125.80	-	
Plesionika heterocarpus			107.06	105.48	48.29	27.51	2.99	2.93
Plesionika martia					106.06	60.10	307.54	53.57
Squilla mantis	1 042.57	175.23	90.47	37.90				
Cephalopoda								
Alloteuthis spp.	178.05	64.39	16.22	9.32				
Eledone cirrhosa	26.61	8.59	76.17	10.14	50.39	13.73	5.31	2.06
Illex coindetii	336.54	145.42	1 293.1	459.81	108.75	25.83	14.05	5.85
Sepia elegans	63.58	35.67	45.50	16.98				
Sepia orbignyana			53.58	12.55	4.57	2.60		
Other invertebrates								
Bolinus brandaris	248.42	63.49	4.56	1.89				

Table 24. Landed species with higher abundance for 2021. SE: standard error.

	Shall continent	ow al shelf	Continent	al shelf	Upper s	slope	Lower	slope
	mean	SE	mean	SE	mean	SE	mean	SE
Actinopterygii								
Amoglossus latema	2.06	0.58	0.96	0.26	0.02	0.01	<0.00	<0.00
Boops boops	6.83	2.06	25.56	7.97	0.10	0.10	0.14	0.10
Capros aper			8.63	5.97	0.79	0.41	0.04	0.04
Coelorinchus caelorhincus					5.24	1.57	3.00	1.50
Conger conger			0.17	0.11	2.22	1.19	1.51	0.63
Engraulis encrasicolus	71.70	67.88	4.09	1.26	0.03	0.02	0.01	0.01
Gadiculus argenteus			0.16	0.11	2.04	0.49	0.13	0.06
Lampanyctus crocodilus					0.71	0.60	4.74	1.77
Lophius budegassa	1.42	0.76	11.69	2.74	0.82	0.23	0.26	0.21
Macroramphosus scolopax			2.06	1.15	0.02	0.01	0.01	0.01
Merluccius merluccius	8.31	5.51	23.75	8.34	0.61	0.28	0.08	0.06
Pagellus acarne	5.40	2.80	0.01	0.01				
Pagellus bogaraveo	0.26	0.21	3.74	2.13	1.92	0.86	1.02	1.00
Pagellus erythrinus	2.08	1.15	1.23	0.74	0.05	0.04		
Phycis blennoides			0.56	0.21	1.83	0.52	0.85	0.19
Sardina pilchardus	67.14	57.65	2.42	0.92			0.04	0.04
Sardinella aurita	31.67	17.05	0.72	0.57				
Spicara flexuosa	2.83	1.64	20.40	5.28	0.01	0.01	0.02	0.02
Spicara maena	1.57	1.13	2.81	1.14	0.15	0.09		
Trachurus trachurus	0.86	0.44	7.76	2.52	1.77	0.92	0.18	0.12
Trisopterus capelanus	1.15	0.59	2.20	0.59	<0.00	<0.00		
Chondrichtys								
Etmopterus spinax					0.11	0.06	2.32	1.08
Galeus melastomus			0.09	0.06	2.16	1.07	11.11	5.25
Raja clavata			7.66	7.55	0.02	0.02		
Scyliorhinus canicula	0.15	0.15	41.86	18.70	58.99	13.52	22.53	10.73
Crustacea								
Liocarcinus depurator	3.05	2.14	1.83	1.18	0.04	0.02	0.02	0.01
Parapenaeus longirostris	0.58	0.30	1.59	0.53	0.43	0.11	0.19	0.13
Squilla mantis	3.66	1.13	0.86	0.64				
Cephalopoda								
Histioteuthis bonnellii					1.73	1.68	0.47	0.20
Illex coindetii	0.42	0.07	3.36	1.29	0.55	0.18	0.82	0.29
Octopus salutii			0.03	0.03	1.38	0.58	0.67	0.55
Octopus vulgaris	1.47	0.62	1.91	0.69	0.04	0.04		
Other invertebrates								
Alcyonium palmatum	0.57	0.16	19.09	8.24	0.29	0.09	0.33	0.27
Astropecten irregularis	8.35	2.67	4.76	2.45	0.09	0.02	0.03	0.03
Cidaris cidaris			1.52	0.98	0.97	0.96		
Echinus melo			10.00	5.63				
Leptometra phalangium			54.19	46.40	0.03	0.02	<0.00	<0.00
Spatangus purpureus		_	6.04	5.95				
Diazona violacea	0.01	0.01	2.47	1.23	0.06	0.05	0.03	0.03
Salpa spp.	1.30	1.22	1.02	0.50	0.06	0.05	0.07	0.03

Table 25. Discarded species with higher biomass for 2021. SE: standard error.

	Shall continent	ow al sheif	Continent	al shelf	Upper s	slope	Lower slope	
	mean	SE	mean	SE	mean	SE	mean	SE
Natural debris								
Codium bursa	0.02	0.02	0.06	0.03				
Marine organic debris	8.14	2.00	8.53	1.77	3.39	0.91	1.63	0.32
Marine plants	6.22	1.99	2.11	0.56	0.29	0.08	0.19	0.08
Other marine algae	0.08	0.07	0.03	0.02			<0.00	<0.00
Rhodophyta			<0.00	<0.00	<0.00	<0.00		
Shells	3.89	0.87	4.91	1.03	1.72	0.58	0.47	0.14
Terrestrial plants	9.61	2.36	11.05	3.00	10.02	5.65	6.83	4.25
Marine litter								
Chalk debris	0.08	0.05	4.35	4.20	0.02	0.01	0.23	0.23
Coal	0.52	0.35	2.01	0.64	1.79	0.40	1.82	0.79
Fishing gear	0.02	0.01	0.20	0.11	0.07	0.04	0.04	0.02
Glass / Ceramics	0.70	0.67	0.06	0.06	0.09	0.05	0.15	0.10
Lumber	1.24	0.66	1.86	0.89	0.72	0.39	0.67	0.38
Metal	0.03	0.03	0.25	0.13	0.03	0.02	0.05	0.03
Plastic	2.07	0.72	7.08	2.84	0.88	0.16	1.38	0.79
Ropes	0.05	0.04	0.10	0.04	0.05	0.02	0.04	0.02
Rubber			0.02	0.01				
Textiles	0.18	0.17	0.56	0.26	0.13	0.05	0.24	0.13
Wet wipes	0.23	0.14	4.95	2.22	1.20	0.57	0.75	0.41
Unclassified debris	7.56	7.28			0.08	0.07	<0.00	<0.00

Table 26. Items from the debris fraction with higher mass for 2021. SE: standard error.

Annex 2

Statistical analysis results for bottom trawling *métiers* by port

Figure 128. Residual distribution and adjusted data using a negative binomial model for bottom trawling métiers. Top: Llancà; center: Port de la Selva; bottom: Palamós.

ANNEXES

Figure 129. Residual distribution and adjusted data using a negative binomial model for bottom trawling métiers. Top: Roses; center: Blanes; bottom: Arenys de Mar.

Figure 130. Residual distribution and adjusted data using a negative binomial model for bottom trawling métiers. Top: Barcelona; center: Vilanova i la Geltrú; bottom: Tarragona.

ANNEXES

Figure 131. Residual distribution and adjusted data using a negative binomial model for bottom trawling métiers. Top: Cambrils; center: L'Ametlla de Mar; bottom: L'Ampolla.

Figure 132. Residual distribution and adjusted data using a negative binomial model for bottom trawling métiers. Top: La Ràpita; bottom: Les Cases d'Alcanar.

Multivariate test ANOVA	Res.Df	Df.diff	Dev	p-value
Llançà				
Métier-Métier	76	3	5 355	0.001***
Year-Year	75	1	1 488	0.001***
Métier-Year	72	3	579	0.065
Palamós				
Métier-Métier	75	3	3 943	0.001***
Year-Year	74	1	1 885	0.001***
Métier-Year	71	3	581	0.140
Port de la Selva				
Métier-Métier	61	3	3117	0.001***
Year-Year	60	1	1119	0.001***
Métier-Year	57	3	675	0.069
Roses				
Métier-Métier	74	3	4 153	0.001***
Year-Year	73	1	1 215	0.001***
Métier-Year	70	3	909	0.066
Blanes				
Métier-Métier	76	3	5 125	0.001***
Year-Year	75	1	1 549	0.001***
Métier-Year	72	3	643	0.049*
Arenys de Mar				
Métier-Métier	76	3	5 012	0.001***
Year-Year	75	1	1 823	0.001***
Métier-Year	72	3	1 369	0.024*
Barcelona				
Métier-Métier	79	3	3 331	0.001***
Year-Year	76	1	1 137	0.001***
Métier-Year	75	3	591	0.085

Table 27. Statistical analysis results for bottom trawler métiers by port (Part I). Res.Df: residuals; Df.diff: degrees of freedom; Dev: standard deviation.

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Multivariate test ANOVA	Res.Df	Df.diff	Dev	p-value
Vilanova I la Geltrú				
Métier-Métier	76	3	5 545	0.001***
Year-Year	75	1	1 603	0.001***
Métier-Year	72	3	762	0.021***
Tarragona				
Métier-Métier	76	3	5 791	0.001***
Year-Year	75	1	1 443	0.001***
Métier-Year	71	3	869	0.085
Cambrils				
Métier-Métier	76	3	1 907	0.001***
Year-Year	75	1	2 016	0.001***
Métier-Year	72	3	660	0.167
L'Ametlla de Mar				
Métier-Métier	76	3	2 028	0.001***
Year-Year	75	1	1 129	0.001***
Métier-Year	72	3	546	0.143
L'Ampolla				
Métier-Métier	76	3	2 084	0.001***
Year-Year	75	1	1 220	0.001***
Métier-Year	72	3	394	0.128
Sant Carles de la Ràpita				
Métier-Métier	69	3	3 825	0.001***
Year-Year	68	1	1 743	0.001***
Métier-Year	65	3	880	0.122
Les Cases d'Alcanar				
Métier-Métier	75	3	1 109	0.001***
Year-Year	74	1	1 099	0.001***
Métier-Year	71	3	165	0.479

Table 28. Statistical analysis results for bottom trawler métiers by port (Part II). Res.Df: residuals; Df.diff: degrees of freedom; Dev: standard deviation.

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Annex 3

Species composition by port and landings by port and by métier

									TION												
	Mullus spp.	2002 9 561	2003 4 805	2004 12 003	2005 5 334	2006 22 606	2007 14 206	2008 7 609	2009 11 861	2010 9 035	2011 6 846	2012 7 562	2013 14 782	2014 12 797	2015 8 500	2016 12 282	2017 12 428	2018 17 805	2019 17 912	2020 11 138	2021 17 997
	Trachurus spp. Menuccius menuccius	21 819 46 867	7 080 15 647	17 491 21 627	6 078 7 689	27 518 29 539	26 166 10 454	17 852 19 954	16 984 17 236	13 544 13 203	6 411 10 541	10 628 10 864	12 961 19 162	13 985 18 745	5 458 10 068	8 543 11 248	10 106 10 728	7 675 11 657	24 160 22 129	11411 9016	14 115 13 240
	Lophius spp.	24 318	2 017	9 657	3874	15844	1 803	1 137	4 804	6 029	5 347	3 468	4 899	5 768	3 290	2 365	2617	2 188	5 707	3 446	3 852
OTB1	Eledone spp.	29 230 43 022	3 144 11 668	11 098 32 823	5 614 33 096	24 /28 91 344	2 468 20 313	12 916	2813	2 833	4 803	3 198 17 949	4 984 29 929	3 381 16 926	9 330	1854	3 387 4 099	2618	9 540 14 736	5 304 5 304	3 508
	Octopus vulgaris	9 835	5 760	5 602	6 169	19 747	9516	11 125	6 6 7 9	5319	9 528	11 964	12 654	9178	8 019	8 722	2 502	6 893	7 627	1771	655
	Pagellus acame	14 371	10 838	13 600	7 942	12 366	12 232	10 353	16 401	14 545	14 916	10 891	6 769	8 251	7 184	5 161	679	5 930	3 295	902	321
	Loligo spp. Ostaichthvas	5745	3 856 5 300	7 451	6748 5488	22 153 10 237	5 937	7 282	4 773	2 897	3 149 3 742	75193222	7 231	5 980	2 763 3 292	3 781 2 808	818	2 289 35	1 558 0	571	178
	committee	10171	660 0	101 0	pot p	107 01	0000	5	t t t	C+	7410	777 6		CCT 7	767 6	000 7	071	3	þ	þ	>
	Mullus spp.	1 437	6911	4 796	10 316	6 180	18 193	6666 6	6 085	14 789	13 096	14 276	15 859	29 246	28 247	24 119	20 432	20 253	12 002	18 705	11 558
	Merluccius merluccius	76 062	92 608	29 806	47 937	36 888	55 159	110 550	104 609	92 523	56 790	89 581	29 217 1	34 416	71 758	56 928	36 251	45 785	16 644	12 521	8 793
	Eledone spp.	55 721	40 052	39 830	79 971	35 500	60 841	54 593	66 104	45 918	26 137	36 475	37 817	24 867	17 548	17 452	18 548 0 705	17 499	4 537	6 290	5 439
	Detorior spp.	4 504 E 722	138/0	3 933	986 67	10 812	34 256	12 500	11917	100 1	21 354	28 190	7 200	36 //1	20 109	22 456	9 /U5	18431	11211	21 384	4 296
0782	Octopus vuigaris Ommastrenhidae son	0 200 8 535	1679	1 253	5774	2 352	9 807	26 194	12 121	9 750	13 771	11 508	73,613	27 461	4 197	12 748	5 217	0 0 3 3	3 609	6 180	2 948
	Scomber scombrus	29 469	26 674	20 677	26 798	37 079	129 544	62 837	9 903	10 022	6 537	17 883	29 873	29 043	11 401	17 633	4 878	9218	5 003	1514	2 865
	Lophius spp.	10 136	20 374	15 790	27 442	25 292	20 443	18 055	22 878	28 326	19 704	16 119	20 764	27 888	18 869	12 657	8 184	8 535	5 278	6 450	2 110
	Triglidae spp.	7 302	15 496	10 233	15 375	7 395	13 957	13 098	9 524	8 585	10 958	13 075	9 357	10 885	8 102	10 112	8 561	9642	4 525	5271	1 979
	Trisopterus spp.	41 031	41 108	19 050	54 207	39 794	52 898	26 862	21 713	27 893	32 542	29 885	47 948	41 491	18 105	24 248	11 974	13 376	10 211	4 669	1 954
	Micromesistins portasson	40,655	53 324	52 907	148 885	133 067	127 978	109 850	666 65	37 768	53 051	43 390	60.938	50 005	36 228	26.014	42 029	35 041	50.959	53 930	97 239
	Nenhrons norveaicus	8 356	12 599	19.564	14 507	18 330	23 730	27 629	28 538	21 954	22 560	13 306	15 854	12 027	11 320	10 901	13 451	15 347	14 857	21 383	15 729
	Phycis spp.	8 079	9 155	8 393	6471	8 138	11 191	15 584	13 038	10 619	14 557	11 329	10 832	7 679	8 572	9 464	12 570	13 896	13 167	9 2 4 5	13 561
	Lophius spp.	6 328	11 422	12 148	17 402	16 490	21 172	24 179	12 415	12 709	18 373	12 119	13 983	12 158	14 953	13 839	14 334	11 183	9914	11 756	10 474
CITO	Merluccius merluccius	6788	11 965	9811	11 705	11 432	11 748	15 781	13 942	13 515	15 327	15 500	17 959	14 771	8 769	11 318	19 183	11 462	13 382	7 557	10 144
COID	Trachurus spp.	2 246	11 487	5 763	2829	1 014	8 980	9745	4672	5 604	8873	7 285	7 271	10 155	5 876	8 114	14 900	5 501	7 188	3 213	8 369
	Lepidorhombus spp.	1744	3 257	3702	3 693	4 898	5919	10 017	6274	5 668	6472	5 558	6 256	4 131	4 937	7 436	7 949	6752	4 559	4 194	5700
	Eledone spp.	3 009	2 490	3 332	7 136	4 788	7 394	6 022	7 433	5 043	7 261	7 176	9674	4 661	3 206	4 668	7 101	6 997	4 892	2 268	3 836
	Lepidopus caudatus	6 852	101/9	7 000	15 183	6/69	10 44/	13 3/6	101/1	4 820	3 235	2 944	1 690	913	5/9	204	213	35	41	2	0 0
	Osteichthyes	4 896	808 C	1 283	1 434	0 990	6 864	10 62/	1513	10 605	6 393	4 9/0	4 283	2 881	2 924	2/13	C87	11	D	0	0
	Aristeus antennatus	15 512	24 446	17 290	4722	5 650	11 902	16 427	18 230	10 944	10 168	9 190	8 333	4 963	10 284	14 796	13 399	12 039	7 023	15 351	16 428
	Phycis spp.	3 127	3 566	2 202	2 049	2 706	3 995	3 515	4 364	2760	2 256	1 547	1 398	1 434	1 781	1 961	1824	1613	1 180	1 983	2 658
	Lophius spp.	1 368	2 017	1 422	905	1 121	2 274	1 599	1 666	935	1 304	829	814	1 372	1714	2 042	1 654	1 064	1646	2 308	1 930
	Merluccius merluccius	2 464	3 535	2 373	1 342	1 392	1 964	1 222	2 2 2 2	1 032	1 004	555	1 104	1 115	1170	980	2 284	1 148	1644	1 662	1 490
0784	Parapenaeus longirostris	0	0	0	0	0	0	0	0	0	0	2	œ	10	48	357	368	197	422	940	1 313
i	Ommastrephidae spp.	179	287	302	570	321	232	201	318	303	180	297	342	149	336	305	253	506	278	267	587
	Nephrops norvegicus	141	93	124	2	0	19	10	53	40	100	11	69	104	221	211	68	163	229	381	453
	Micromesisius poulassou	140	000	1 107	0/11	7001	04/1	504	954	COD	115	345	SUC	125	276	194	164	002	105	010	204
	Osteichthves	1 192	1 968	996	302	887	1 689	1110	1 798	1 295	820	522	511	465	769	831	816	10	0	0	0

Table 29. Species composition and landings (in kg) by métier for Llançà

Table 30. Species composition and landings (in kg) by *métier* for Port de la Selva.

1

]
		2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
	Mullus spp.	3 055	1 986	4 338	4 905	2 367	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3 143
	Merluccius merluccius	11 666	2 323	3 132	3 828	1 860	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2 656
	Eledone spp.	11 832	2 648	10 637	13 721	6 323	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1 802
	Trachurus spp.	4 879	1 063	3 257	3 275	1 252	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1 615
10TO	Triglidae spp.	4 185	926	3 251	2 576	2 021	0	0	0	0	0	0	0	0	0	0	0	0	0	0	674
	Pagellus acame	3 354	3 037	4413	2 165	1 005	0	0	0	0	0	0	0	0	0	0	0	0	0	0	405
	Loligo spp.	1 632	1 310	2 595	4 202	2 395	0	0	0	0	0	0	0	0	0	0	0	0	0	0	186
	Sardina pilchardus	3 445	68 934	213	180	200	0	0	0	0	0	0	0	0	0	0	0	0	0	0	34
	Micromesistius poutassou	13 117	49	439	÷	214	0	0	0	0	0	0	0	0	0	0	0	0	0	0	34
	Engraulis encrasicolus	49 565	10 710	87	e	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7
	Trachurus spp.	4 898	6721	1 676	11 905	14 595	13 989	11 222	12 063	4814	3 781	2 824	1 887	1 956	165	1 031	783	283	2 704	1 216	0
	Sardina pilchardus	13 757	7 992	2 568	2 538	1 441	3 438	3 355	2 863	310	181	139	9	181	31	3	0	0	48	56	0
	Trisopterus spp.	37 318	24 559	6716	28 440	18 977	16 332	9 227	16 695	6 146	5 608	8 531	5 509	2 657	1132	2 357	388	462	1 868	405	0
	Lophius spp.	13 673	11 987	9 449	15 490	11 036	7 100	4 538	12 663	5 920	3 397	2 736	2 389	1435	942	1 047	341	298	1 312	381	0
Caro	Scomber scombrus	22 496	18 399	7 305	15 608	24 488	55 122	22 627	8 971	2 389	687	5 303	3 242	2 771	209	2 477	351	565	1 805	156	0
7010	Merluccius merluccius	63 502	52 124	12 566	24 449	16 434	15 580	27 729	79 400	18 766	9 904 3	1 161 1	6 279 1	1 230	5 684	8 197	2 803	2 280	6 152	1 036	0
	Triglidae spp.	17 826	17 198	10 865	11 156	7 690	9 306	5 442	6 183	2 441	1 910	1 761	1 203	409	299	669	270	229	1 039	273	0
	Mullus spp.	2 328	4 164	3 485	4 446	3 987	6 675	3 5 1 9	6 210	3 003	3 189	3 497	2 490	2 332	1 545	2 697	872	965	3 557	1410	0
	Eledone spp.	46 161	18 769	11 762	23 086	13 483	14 522	10 379	37 783	7 620	3 024	6 390	4 991	2 997	808	1 202	903	833	4 826	838	0
	Ommastrephidae spp.	6 624	1011	396	2 231	1 234	2 299	3 945	5 723	1 788	1814	1 266	2 608	1 310	226	945	218	288	1 053	217	0
	Micromonistics portroport	10,000	JE GEO	00 670	101 252	110 400	10, 70,	FUC UC	DT GEE	CVC 10	2 6 2 4	1 000 0	K 010 T	c cuo r	1 150	7 116	6 200	VCV V	0000	100 0	2 EDE
						CO1 61	102.21	107 1		12012	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				2000		-	1 1 2 2	0202	100	
	Nephrops norvegicus	11 18/	15 041	14 456	24 444	21 432	13 446	5 194 7 200	2 005 F	6/9 GI	/ 558 /	2/20	4 438	9 501	/ 003	2 917	3 338	5 103	2 996	191	13/8
	Lopnus spp.	5 801	9 /14	9316	14 /28	12 922	134/3	/ 009	/ 530	/ 42/	3 356	1 421	3 /58	6 /11	6 465	2 291	1842	3 491	1 890	489	1 164
	Phycis spp.	8 100	6 545	3 884	6 529	5 300	3873	2 282	3 657	4 205	2 028	4 933	2 070	2 603	2 774	869	359	2 562	1931	274	1 031
OTB3	Merluccius merluccius	3 435	5 263	2 898	8 288	5 621	3 987	2 033	8 082	4 292	1 585	5 033	3 088	4 561	3 073	1 608	1 422	2 742	1854	323	583
	Inglidae spp.	2 806	2 662	2 552	3 500	3 137	2 069	1 086	1 040	1 155	809	1 081	945	1773	1 613	546	401	1579	658	257	458
	Trachurus spp.	288	2 875	3 551	1175	1 537	6 067	12 026	11 480	4 611	3 179	2 202	1 787	2 712	2 775	688	270	1 462	1 163	421	415
	Eledone spp.	1 946	1 250	1 335	4 159	4 793	1 984	899	2 839	1678	351	2 395	1 303	1 447	1175	215	317	1619	915	61	368
	Helicolenus dactylopterus	2 103	3 080	2 669	4 392	4 046	3 509	2 049	2 435	3 321	2 106	3 037	1 402	1 794	1 547	688	580	1649	751	285	345
	Lepidopus caudatus	2 392	3 973	6 075	11 726	6 776	13 495	5 061	3 238	9 268	3 268	5 463	928	2 522	1 400	205	11	40	13	0	0
	Aristeus antennatus	36 646	30 318	25 989	3 725	8 643	30 077	57 943	56 062	26 946 4	4 200 2	2 038 4	0 904 3	2 605 4	0 522 4	3 550 3	3 974 3	80 437	15 906	5 764	4 958
	Phycis spp.	5 174	7 309	5 889	2 613	4614	8 604	9 563	11 930	9415	7 786	6 765	7 584	4 720	5 387	5 096	4 064	5 164	3 317	1 607	1 524
	Lophius spp.	2 967	3 462	3 077	1 525	3 210	6 952	5 569	6 142	3 802	4 001	2 834	3 315	3 869	6314	5 915	4 471	2 990	2 077	991	1 109
	Merluccius merluccius	5412	6 583	4 332	1 553	1881	5 480	5431	6 956	4 648	5 593	3 280	6 565	8 730	5 631	4 852	5 193	3 669	3513	1 129	949
La TO	Gambes varies	0	0	0	0	0	0	153	2814	1 202	2 065	964	2 023	1439	1 935	2 040	2 292	1 608	778	583	580
	Conger conger	2 210	2 108	2 194	493	722	1 788	3 178	2 895	1 003	1 401	635	1 006	908	841	805	452	919	464	332	138
	Micromesistius poutassou	1 901	2 307	1746	1 865	5 525	16 180	5 877	5 270	3 249	2 180	1 325	2 409	2 320	2 391	2 121	1 319	1 074	396	298	104
	Taurons	3 645	4 364	2 699	1 757	1 222	2 901	2 901	2 821	2 934	2 197	1 025	1 243	1 037	1 923	1 742	1 774	905	319	49	7
	Sardina pilchardus	0	0	20 210	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0
	Osteichthyes	1671	1 452	1754	833	1 147	2 880	1216	672	1 888	2 536	678	675	446	587	711	438	25	0	0	0

Table 31. Species composition and landings (in kg) by *métier* for Roses.

									Nort	ţ											
		2 002	2 003	2 004	2 005	2 006	2 007	2 008	2 009	2 010	2 011	2 012	2 013	2 014	2 015	2 016	2 017	2 018	2 019	2 020	2 021
	Mullus spp.	27 505	30 603	28 011	23 682	31844	63 978	30 733	28 218	0	20 060	22 385	50 399	32 260	32 206	28 437	8 072	29 985	34 553	47 632	41 563
	Merluccius merluccius	177 931	32 310	42 224	67 709	18 355	79867	248 065	36 628	0	15 881	100 636	155 594	30 264	10 486	6416	22 433	14 328	45 972	58 997	25 946
	Trachurus spp.	35 916	17 960	26 142	39 627	17 361	62 441	163 122	23 454	0	17 639	58 104	61 908	23 201	11 481	5 710	42 481	11 462	29 590	88 997	25 694
	Eledone spp.	105 178	21 271	48 901	93 124	23 923	114 859	95 873	24 840	0	11 548	124 054	139 522	21 960	8 843	8 695	8 194	13 245	50 929	34 720	18 049
1010	Ommastrephidae spp.	20 439	716	2 359	7 838	2 404	14 103	53 729	3 185	0	4 393	20 217	49 230	17 052	1 101	2 367	4 086	1 876	28 440	47 035	17 522
	Triglidae spp.	28 740	10 178	16 276	15 662	6 933	24 540	25 338	5 341	0	5 357	15 247	21417	5 028	2 920	3 333	9 494	5 653	15 625	19 034	9476
	Pagellus acarne	18 741	15 992	18 229	12 332	11 184	17 071	20 002	18 287	0	17 121	9 427	14 710	11 904	12 249	13 971	475	12 398	6483	5 497	8 903
	Lophius spp.	22 165	2734	8 417	9 282	1 712	21 869	31 104	2 911	0	2 594	20 562	27 296	5 434	3 766	2 397	5 266	3 557	18 566	24 541	8 188
	Trisopterus spp.	24 772	2 729	9718	19 035	3 545	26 268	20 878	3 508	0	1671	19 414	27 926	3 687	1 066	1 040	4 453	2 597	18 347	25 161	4 208
	Loligo spp.	26 263	19 080	20 964	24 078	23 031	19 787	23 085	12 321	0	8 465	19 335	16 895	11 637	4 701	4 542	435	6 620	4 631	2 579	3 902
	Merluccius merluccius	80 797	131 738	64 160	51851	79 260	28 430	27 727	231 246	177 695	122 982	25 030	58 852 1	128 317	81 784 1	08 970	58 322	75 262	35 526	0	33 321
	Ommeetranhidaa can	0,006	E 106	1624	E 426	0.046	2 06.7	7 1 2 2	25 020	00100	10 241	E 270	14 476	20.020	11 120	20102	12 062	17 026	11 500		2112
	Trachurus son	0 030 25 100	001 0	4 UZ4	10 252	0 940 22 026	200 504	1 122	20 UZ3	23 100 157 511	64 E04	0100	20 011	002 01	004 11	56 226	12 002	41 000 62 026	01 400		20 157
			220 10	12412	19 202	070 007	100 034	10214	101 001	110/01	40010	20 203	11800	000 000	070 4C	070 00	170 77	000 00	91490	0 0	101 07
	Eledone spp.	4/ 480	09 312	80.179	050 690	138 89/	21 509	106.8	132 493	9/L GLL	00 816	C1912	44 /06	G/L L01	96/ CC	00 / 000	48 84/	1/ 891	819 CL	0 0	CL8 61
0782	Mullus spp.	2 934	106	0 003		13 490	0000	QC/	14 199	004 04		040 4	0 934	19 8/9	30 421	4CC / 4	40 393	30 0/4	19 90/	0	10/
	Lophius spp.	22 387	32 425	28 993	28 511	23 288	21 352	26 006	31 771	39 319	24 884	10 048	11 639	31 998	28 915	24 240	18 928	22 771	12 251	0	10 567
	I risopterus spp.	22 348	25 673	21 487	26 036	34 017	10 267	1 405	30 255	30 764	24 329	8 571	16 566	33 194	14 925	22 356	13 108	20 025	21815	0	7 442
	Triglidae spp.	14 536	24 939	21 732	19 162	20 001	0026	4 268	22 592	28 521	21 449	7 515	8 784	19 045	19 028	22 618	18 925	28 960	16 175	0	6 407
	Micromesistius poutassou	168 923	51 318	19 803	30 867	6 351	170 822	141 228	7 634	13 618	3 600	15 923	64 473	13 410	4 396	7 152	139	7 151	4 013	0	1 026
	Engraulis encrasicolus	2 874	19 029	15 001	1 287	12 006	1 439	81	13 330	77 421	10 637	334	625	11 066	5 267	2 835	1 385	759	388	0	275
	Parapenaeus londirostris	2 322	3 524	2 977	2 987	2 333	913	370	701	1 481	2 199	2 312	1251	3 048	5 870	32 434	26 466	6 547	7 002	14 131	35 192
	Micromesistius poutassou	83 112	121 937	150 271	342 038	360 764	292 117	25 411	171 230	183 082	255 473	89 562	132 326 1	142 193	58 246	47 559	56 057	60 199	84 732	41 514	31 922
	Merluccius merluccius	20 780	62 813	43 239	65 329	47 216	25 693	6213	65 831	61 333	66 805	32 762	46 998	66 092	36 564	39 730	44 946	27 079	41 865	17 589	25 127
	Phycis spp.	41 860	31 453	26 459	20 308	23 677	21471	9 125	30 779	24 437	31798	24 943	22 105	30 856	31 253	27 615	25 630	27 284	36 587	12 494	24 862
	Nephrops norvedicus	34 624	39 440	40 103	42 558	63 004	49 327	16 862	54 573	49 534	36 227	32 257	45 200	43 300	24 182	26 280	27 632	28 930	28 444	11 540	16 335
0183	Trachurus spp.	1 824	41 539	23 482	7 939	8817	904	265	58 186	64 528	64 497	17 385	8 047	49 102	34 857	20 879	18 204	11 738	23 954	30 686	14 736
	Lophius spp.	20 313	26 121	24 399	33 397	29 109	21758	8 131	30 314	23 223	31 144	18 182	17 152	24 147	25 334	23 700	18 090	15 684	15 579	9 273	12 236
	Ommastrephidae spp.	2 803	4 356	5762	7 059	5 148	1941	1 461	15 659	14 664	27 271	4 251	679	15 744	5 539	6 093	4 021	11 674	6 275	4 927	10 607
	Aristeus antennatus	8 532	8 900	9 981	763	5 695	6478	21812	10 509	6 797	8 333	6 997	11 851	7 352	10 747	10 649	4 598	1844	1641	1 928	7 175
	Eledone spp.	6 297	4 927	10 696	19 760	16 484	7 353	601	16 528	15 961	23 389	8 173	8 486	11 495	8 633	9 275	14 576	13 467	9 958	3 826	6 137
	Aristeus antennatus	37 156	25 862	25 338	6 908	83	26 234	54 175	59 087	28 599	33 683	36 373	48 259	27 587	52 195	54 862	42 735	32 090	28 237	49 432	27 898
	Gambes varies	0	0	0	0	4	2 9	525	3 885	1 665	2 009	1 643	2 910	2 042	3 058	2 450	4 001	2 137	1 654	3 042	1 778
	Phycis spp.	5 226	3 520	4 254	2 663	4 957	5 891	6 620	6 821	5 397	3 405	7 444	5 158	4 836	5 804	4 088	4 498	5412	3 086	7 320	1617
	Lophius spp.	1 982	2 094	2 604	952	21 746	2 402	3 329	2 991	1 829	1 891	1 893	1 969	2 432	3 248	2 270	2 627	1459	1 768	7 625	1 301
, uro	Merluccius merluccius	2 522	2 070	2 688	1 251	33 241	2 087	2 589	2 991	2 274	1 181	1 680	2 793	3742	2 474	1 270	2 818	1518	1863	6 808	881
4910	Trisopterus spp.	5	0	24	0	25 859	0	148	-	78	4	4	46	9	1	0	55	0	662	1 297	488
	Micromesistius poutassou	660	475	1 729	364	44 434	1 974	1 309	1 136	392	738	729	1 186	789	482	173	369	642	111	9 332	109
	Eledone spp.	108	18	149	20	35 990	S	141	103	426	22	108	427	127	148	213	446	415	185	708	63
	Engraulis encrasicolus	13	0	ŝ	0	833	28 540	28 644	52 050	146	85 710	453	257	0	0	0	0	9	0	0	0
	Sardina pilchardus	0	0	0	0	64	218 580	87 629	102 410	94	61910	9	26	0	0	0	0	0	0	0	0

Table 32. S	pecies con	nposition	and la	andinas	(in ka)	bv	<i>métier</i> for	Palamós.
TUDIC 52.5	pecies con	iposition		manigs	(III Kg)	Ny	metici ioi	i uluiilos.

									NON	_											
		2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
	Mullus spp.	13 059	18 692	10 550	14 701	20 692	30 541	24 663	28 635	33 533	19 673	14 294	25 439	25 059	13 892	18 446	17 110	10 867	617 T	7 508	8 992
	Merluccius merluccius	13 010	23 384	6 7 7 9	17 046	23 145	16 276	38 652	43 520	25 182	23 672	26 797	27 241	17 283	12 293	8 993	8 204	1 838	5 528	1 853	3 796
	Lophius spp.	4 335	10 200	3769	7 623	14 217	35 120	15 261	18 319	22 019	19 931	16 593	14 530	16 557	8786	6 094	7 406	1 320	8 597	2843	3 666
	Trachurus spp.	16 658	19776	8 649	56 584	59 598	48 682	123 716	113 146	82 630	28 133	35 512	29 088	31 077	16 469	11 159	13 062	4 304	12 593	1 630	2 453
10TO	Ommastrephidae spp.	4 090	1 291	568	3 603	3 339	4 881	20 940	10 768	14 878	26 076	10 214	17 807	18 500	2 686	6016	2 544	482	4 623	1 561	2 278
1010	Eledone spp.	18 927	27 662	11 922	29 410	41 168	64 716	25 521	38 394	23 518	17 275	17 864	14 142	7 241	8 443	6 536	7 001	476	5 233	607	1 457
	Loligo spp.	10 492	15 366	12 767	15 555	13 563	9 654	15 445	12 389	10 903	10 623	8 925	7 473	8815	2 345	3 102	1 999	2 707	525	381	1 447
	Pagellus acarne	8 638	13 984	8 994	11 887	13 138	13 563	13 147	13 671	12 362	9733	6 628	4 669	6429	2 522	2 329	1981	3 329	685	1 550	1 285
	Scomber scombrus	2 483	2 233	4 445	7 509	7 250	278 280	40 250	7 129	4 643	2 024	3760	2 198	1 469	738	946	338	47	421	273	82
	Osteichthyes	29 574	50 026	27 110	48 120	23 825	36 404	26 116	35 315	27 568	23 702	19 058	15 485	11 302	7 594	7 132	6 914	229	0	0	0
	Parapenaeus longirostris	0	0	0	8	3	0	9	0	35	9	15	103	352	1 489	4 859	4 925	6821	2 575	23 824	43 719
	Trachurus spp.	5 186	4 038	17 713	12 285	783	0	58	31	74	36	40	58	2 213	1 443	425	50	7 790	1 284	9 115	43 585
	Lophius spp.	28 208	22 195	29 056	26 676	23 283	0	10 922	11 546	14 080	11 536	9 173	11 627	17 745	15 569	10 964	10 167	16 353	13 644	16 987	14 640
	Ommastrephidae spp.	7738	916	2751	2 550	1 319	0	7 660	3 170	4 736	8 280	3 249	7 420	11 895	2 306	6 270	2 883	17 718	6 128	8 932	14 560
CTD3	Merluccius merluccius	23 949	20 707	25 231	26 582	12 339	0	4 254	3 845	1 673	1 534	1856	2 933	3 830	6 652	6 901	5 572	9411	4 938	7 243	14 181
7010	Mullus spp.	7 983	3 997	5873	6444	3 554	0	2277	1 013	1 739	966	680	2 005	4 244	6 662	8724	6 180	13 163	12 292	6 354	10 744
	Eledone spp.	88 213	54 447	79 673	66 357	49 007	0	23 650	39 690	26 699	22 246	32 711	28 246	21 206	27 774	20 721	16 680	19 332	10 795	5 131	9 944
	Trisopterus spp.	26 921	8 973	17 791	27 004	22 876	0	3774	3 394	3 785	3 251	6 537	7 628	8 947	4 247	5 675	3 881	6 572	7 097	5117	2 402
	Micromesistius poutassou	16 607	21 351	15 019	48 083	10 020	0	478	176	40	26	5	29	161	20	147	3	274	36	642	619
	Osteichthyes	49 266	34 069	44 186	23 917	11 283	0	10 957	17 774	13 729	12744	9859	10 774	10 212	13 522	12 754	11 400	1470	0	0	0
	8																				
	Trachurus spp.	3 516	2 994	1734	608	1 961	20 261	20 550	10 746	13 009	21 050	3 889	486	7 884	12 340	3 165	9 251	5 640	22 456	21 817	28 815
	Parapenaeus longirostris	0	0	0	75	277	46	488	1 300	2 207	2 189	1759	1444	2 188	3 909	17 643	13 704	9 236	13 071	17 512	24 848
	Phycis spp.	40 139	23 078	18 195	14 677	21 313	26 039	26 309	27 746	16 495	27 463	21 363	13 207	16 645	21 004	17 033	18 769	22 389	34 022	12 461	17 813
	Micromesistius poutassou	175 268	190 838	132 349	309 593	496 930	579 956	101 431	144 764	125 206	71 120	34 252	56 453	60 658	22 368	20 244	28 912	39 216	47 175	21 599	17 517
OTR3	Merluccius merluccius	43 593	54 891	35 058	33 426	30 616	20 011	27 733	43 996	20 902	35 727	29 231	26 451	36 706	21 366	22 816	16 908	16 669	21 271	10 153	13 625
2010	Nephrops norvegicus	33 932	40 357	37 645	28 705	34 481	35 918	35 265	62 524	37 543	46 932	36 136	36 981	33 585	21 130	23 041	22 248	24 457	28 661	18 133	12 800
	Lophius spp.	17 593	14 893	11 422	16 437	21 193	19 070	19 502	17 985	10 975	14 857	10 202	7610	6 322	10 944	9835	6 325	8470	9373	5 991	4748
	Eledone spp.	10 624	5432	6 562	15 739	21806	8 329	5 248	11 010	4914	5 447	4 100	5 979	3 192	6009	7 096	7 208	10 948	7 037	2 290	2818
	Aristeus antennatus	19 903	16 054	11 224	1 648	2 484	4 624	17 877	9 040	516	11 651	9747	273	625	10 656	9112	4711	2 506	2732	2 995	344
	Osteichthyes	20 303	15 337	17 030	14 251	14 753	11 271	15 322	15 044	10 113	13 325	9 362	6730	5717	6 588	7 554	8 250	149	0	0	0
	Aristeus antennatus	136 315	100 434	94 591	57 409	58 779	118 598	155 355	147 206	117 369	122 779	30 878	40 561	92 189	127 678	06 062	91 128	91 843	72 237	58 439	75 759
	Phycis spp.	16 549	6266	9914	11 599	13 534	16 647	18 710	19 899	19 282	15 587	16 988	15713	17 472	10 704	9518	11 519	10 490	16 888	111 6	14 853
	Lophius spp.	5 318	4 690	4 775	4 339	3776	6 396	6473	6 941	6795	6 362	4 277	5 695	7 384	4 569	3704	4 668	3 175	5 086	4 024	4 597
	Merluccius merluccius	7 306	7130	6423	7 903	6377	7 263	6755	10 102	8475	6706	4 422	7774	8 153	2 972	2 892	3 491	3 102	5 398	3 012	4 055
NTD	Nephrops norvegicus	1 636	306	394	3731	897	2 267	2 240	1 441	7 795	1 005	1473	7 145	5 971	926	636	745	901	691	1511	2842
	Ommastrephidae spp.	285	237	150	431	450	332	737	1 521	3 455	2 076	1 340	2 365	2 365	1 545	1 202	1 126	2 376	1677	1 166	2 197
	Micromesistius poutassou	7 362	8 247	6812	15 060	12 163	15 511	11 387	11 331	19 302	16 985	1 788	9 329	4 828	1214	1014	1473	1 609	1 575	1 502	1 314
	Eledone spp.	2 322	516	2 090	1 207	135	512	138	1 320	566	928	1 268	767	555	1 022	1 600	513	2 367	412	725	902
	Gambes varies	0	0	0	5840	9 082	9461	7 258	14 696	8 827	8 771	8 493	7 917	9 049	7 260	7 506	9 520	4 066	6763	111	732
	Usterchtnyes	12/01	11 234	15 /06	8C2 C	3 192	3 350	3 2 29	1 661	2 036	2112	14/6	2 810	1 022	932	8/3	644	4	0	0	0

Table 33. Species com	position and	landings	(in kg) k	by <i>métier</i> for Blanes.
			·	

Trachurus sp Mullus spp. Pagellus eryti	pp. thrinus	2002 81 489 10 574 10 739	2003 14 272 12 006 10 250	2004 22 083 8 084 7 020	2005 48 331 6 715 7 838	2006 41 871 20 369 11 331	2007 7 242 3 663 2 063	2008 18 325 13 013 9 813	2009 19 658 10 497 8 564	2010 11 972 15 674 9 769	2011 16 059 4 866 4 620	2012 31 824 8 518 8 420	2013 29 191 9 472 13 976	2014 43 667 11 604 18 029	2015 30 978 5 668 8 357	2016 13 435 7 813 7 588	2017 9 225 5 976 5 200	2018 40 932 19 056 7 492	2019 15 103 6 252 3 469		2020 9 995 8 816 3 213
Merluccius n DTB1 Loligo Spp. Arísteus ante Pagellus acar Scomber scoi Micromesisti Boops boops	merluccius ennatus irre itus poutassou s	11 647 10 905 2 678 17 021 231 539 1 410 11 530	11 705 11 336 2 325 13 014 97 253 685 7 110	8 653 15 070 3 684 9 400 43 080 3 757 8 505	5 084 13 385 2 749 12 308 49 049 1 320 3 729	7 972 16 000 1 472 13 762 130 934 17 223 3 688	2 206 413 3 493 959 576 847 17 548 680	9872 8984 9184 10578 158272 2901 5015	7 883 9 849 6 423 13 877 22 618 13 570 5 422	5 155 6 666 7 207 14 541 387 3 385 3 305	7 701 7 990 10 671 7 525 17 324 17 806 329	6 404 11 485 11 491 7 163 3 125 513 4 268	6570 8824 11144 10771 1528 1124 1000	7376 11274 6437 19133 328 3842 2121	5 799 3 469 9 022 5 814 370 1 061 91	2 078 5 645 6 816 3 701 83 170 70	1 846 2 512 3 445 3 626 137 109 226		2 604 3 896 3 654 1 061 153 153 153 153 153	2 604 1391 8 896 1514 8 654 4 083 1 061 2 040 153 58 1 400 96 1 231 350	E604 1.391 769 8896 1514 2031 8654 4.083 3917 1061 2.040 3657 153 58 56 163 3.047 3677 153 58 56 123 350 96 1231 350 96
Ommastreph Lophius spp. Merluccius n Triglace spp Mullus spp. Trachone spp Trachone sp Trachone sp Cropps unja	h iddee spp. merluccius pp. spp. s s	2 131 17 359 1 446 9 145 15 384 29 856 545 3 541 3 541 8 620 10 694	941 14 170 2 740 9 185 12 052 22 768 2 234 1 983 4 269 10 278	630 16 531 2 334 13 063 11 122 31 303 4 165 1 877 6 215 15 991	747 18 410 869 12 257 12 257 12 070 35 714 2 995 3 773 6 432 6 432	777 24 608 700 16 249 10 626 33 382 2 229 6 639 6 525 11 937	1 620 23 824 2 556 11 193 35 041 27 003 4 308 4 308 10 318 14 474	8 914 15 307 3 278 7 150 12 108 20 367 3 666 2 249 6 355 6 355	2 976 12 317 3 430 7 350 8 656 5 044 5 044 2 2 905 2 905	11 290 14 148 2 048 6 499 13 928 16 336 1 110 1 958 1 674 6 753	8 627 13 633 3 243 6 292 8 918 12 478 1 523 2 855 2 493 6 829	3 913 11 860 3 034 5 051 5 978 18 282 2 043 3 512 3 512 3 512 6 617	12 928 17 620 11 295 8 637 20 107 20 107 11 672 8 621 8 621 8 986 7 795	7 022 18 685 2 775 7 825 18 834 11 015 4 201 5 878 5 878 8 385	1 360 11 479 3 513 7 278 16 101 8 815 3 406 2 680 3 221 3 221	6 905 6 497 6 497 8 787 23 446 8 059 8 416 4 426 3 914 3 914 8 082	1 338 10 090 4 427 6 367 16 773 5 715 5 715 7 059 2 660 1 791 1 791 5 269	9 75 2 51 2 88 2 82 2 45 2 45 2 82 6 4 1 0 8 2 6 4 1 0 8 2 1 0 8 2 1 0 8 2 1 0 8 2 1 0 8 2 1 0 8 2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	ភ ខ ១ ៦ ៦ ១ ១ ១ ១ ៩ ៦ ៩	35 2 569 79 10 1952 16 1 952 86 6 130 85 14 355 85 3 344 86 3 341 86 977 48 86 0 714	55 2.569 3.660 79 10.192 9.998 16 1.952 1.589 16 1.952 1.589 16 1.952 1.589 16 1.952 1.269 16 1.4355 12.041 16 3.894 2.011 175 3.614 6.900 175 3.614 1.125 175 3.141 1.125 175 3.141 3.78 18 0 0 0
Parapenaeus Phycis spp. Nephrops non Meraluccius n Micromesist Laphdorhomb Laphdors spp. Eledone spp. Frachurus sp	s longirostris nvegicus merluccius bus spp.	747 32 653 25 836 12 882 59 002 2 456 9 486 5 498 5 498 5 498 3 566 4 096	953 20 366 24 737 18 725 62 854 3 251 9 167 3 731 2 237 5 087	1 280 13 953 23 679 10 308 35 918 35 918 2 031 5 709 5 255 664 6 169	1 580 15 828 25 622 13 897 108 045 2 580 10 243 8 869 8 608 8 608	636 26 504 27 803 17 366 302 154 5 807 12 639 8 612 8 612 8 612 9 482 9 482	206 19 366 28 083 6 678 6 678 4 075 10 663 3 548 3 548 3 583 3 706	275 22 065 28 911 7 834 31 265 4 829 8 903 8 903 2 694 6 793 5 035	584 15 819 38 872 38 872 12 625 18 488 3 655 5 014 4 359 2 36 2 36 3 204	1 422 15 646 34 666 4 602 16 121 3 161 4 086 2 011 606 3 471	1 961 19 619 35 316 7 034 13 879 2 851 5 106 1 971 156 2 455	1 671 23 249 37 157 12 866 18 887 3 366 4 432 6 324 4 200	2 423 20 342 38 308 15 156 36 716 4 612 6 842 5 562 2 380 3 610	3 870 20 987 36 429 23 437 28 212 2 8 212 2 788 4 387 1 556 2 118 3 770	2 958 20 173 18 696 8 050 9 559 2 203 5 922 2 970 2 970 2 855 7 204	17 092 16 177 17 004 13 775 7 737 3 520 3 859 3 859 2 669 1 009 4 197	16 785 22 178 24 723 13 213 10 535 3 236 4 625 5 318 3 998 2 448 2 448	114 52 28 29 14 14 14 14 14 14 14 14 14 14 14 14 14	9 403 2 886 3 815 9 264 1 472 1 979 1 232 1 232 0 85 1 129	403 10 376 888 26 12 8815 25 22 8815 25 22 1264 12 065 1472 15 692 949 2360 2360 7264 2 25 127 15 692 764 2 675 7085 1 789 129 085 1	403 10 376 15 388 2886 26 12 313 501 8815 22 299 13<501
Aristeus ante Phycis spp. Gambes vari Merluccius r Dothus spp. Micromesisti Pagellus bogo	ematus les merluccius hidae spp. tius poutossou svregicus	70 192 13 203 653 6 904 4 176 735 9 295 1 1720 1 117	38 242 8 094 609 4 330 2 881 11 027 1 151 2 305 6 5 2 305	41 691 9 710 396 5 852 3 454 1 158 1 158 4 229 4 229 5 652	27 866 6 219 40 3 627 2 079 1 538 9 423 1 404 1 418	30 262 8 929 62 62 2 932 2 932 2 325 1 738 14 233 14 233 1552 255	62 473 10 304 95 4 277 3 986 994 15 535 1 511 649 649	72 583 10 099 13 4 548 4 871 918 9 654 2 334 1 407	76 608 11 162 22 6 580 4 339 1 119 1 675 2 354 6 813	51 182 11 389 62 4 841 3 183 1 928 9 426 1 928 1 047 1 047	62 832 8 476 4 75 6 194 6 194 2 905 2 485 7 208 1 739 1 739	59 365 6 776 776 2 919 1 754 1 963 1 963 474 567	65 673 8 844 3 844 4 849 2 165 1 579 4 294 713 382	62 055 9 894 50 6 975 2 730 2 730 1 261 5 486 649	106 243 7 393 2 35 43 3 543 2 273 2 273 7 98 1 408 1 408 5 60	84 919 13 099 4 899 3 157 1 194 2 119 2 119 2 119 2 119 2 119	68 203 12 411 2 411 4 346 2 598 2 598 2 598 1 463 1 463 1 448 714	52 80 82 11 13 13 33 33 3	117 88 90 119 76 85 85 85 85 85 85 85 85 85 85 85 85 85	17 58 895 80 9 874 770 4 211 90 4 511 91 1548 66 947 19 1729 76 309 75 108 65 108	17 58.895 63.813 88 9.874 8.166 70 4.211 3.095 45 1.548 2.068 66 947 659 19 1.724 2.068 65 947 1633 76 309 8723 76 309 8723 76 309 8723 76 309 8723 76 0.08 872 76 0.09 45

								U	en te	-											
		2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
	Mullus spp.	18 531	23 138	19 696	17 161	30 415	26 636	32 678	12 656	13 506	12 136	17 022	22 076	16 726	18 100	24 310	28 485	30 193	28 390	19 317	9 824
	Loligo spp.	8 367	8 194	16 097	7 653	22 812	3 642	11 307	6 670	8 742	10 981	12 298	10 714	11 550	6 625	8 398	5 961	5 345	3 626	2 780	5 686
	Pagellus acarne	11 736	18 374	11 060	7 902	12 069	6 525	12 401	9 898	12 909	14 446	13 896	12 938	11 589	9 919	8 607	10 750	14 312	13 940	8 949	5 149
	Pagellus erythrinus	6 372	8 278	5 638	3 619	13 743	7 022	10 105	7 114	10 169	8 969	9 362	13 333	10 568	9 844	11 716	12 670	11 985	9 850	7 883	3 329
OTB1	Trachurus spp.	8 370	5 926	13 917	20 762	15 421	7 541	89 712	9 308	7 503	14 999	13 213	14 318	10 900	13 189	10481	12 358	17 429	16 373	6 433	3 093
	Merluccius merluccius	9 602	5 712	16 333	6 491	15 600	8 843	24 249	3 455	7 605	15 333	12 976	15 326	4 240	16 265	7 892	13 764	8 392	8 641	2 154	2 407
	Rajades	2 069	2 473	3 510	2 269	5 259	4 681	3 553	3 642	2 664	3 944	9 187	17 121	14 882	6 171	5 101	3 811	6 221	9 227	5 579	2 325
	Octopus vulgaris	14 819	10 520	12 476	7 175	14 826	9 204	10 623	2 382	2 794	4 825	6 881	9 328	3 418	4 522	8 723	5 904	4 317	9 602	1 187	988
	Triglidae spp. Scomber scombrus	6 735 3 094	4 117 1 130	5 293 4 365	5 245 2 865	6 403 4 423	3 335 1 972	4 181 103 361	3 094 178	4 042 308	3 788 5 629	3 893 4 007	4 196 981	3 012 365	3 224 785	3 871 480	3 778 541	4 348 984	6 497 558	2 193 182	713 202
	Mullus spp.	3 107	5 269	4 462	1 610	4 149	9 345	4 274	7 242	5 193	3 532	2 581	5 706	8 491	10 566	15 047	5 515	6 383	1829	11 992	12 398
	Lophius spp.	5 270	5 676	5 714	4 747	13 615	14 965	8 438	10 245	14 457	13 040	7 878	11 165	18 154	10 734	6 947	5 101	5 215	4 578	7 878	8 428
	Merluccius merluccius	1 689	10 247	1 319	2 575	1 024	1 225	1 149	7 980	2 987	4 321	3 813	6 604	19 408	6 882	9 952	1 794	5 211	1 172	5 047	7 880
	Triglidae spp.	4 196	7 470	6 888	3 630	9 158	7 163	10 210	12 348	9 610	9 523	6 462	8 311	10 318	9 327	7 905	5 110	4 333	2 988	5 204	6 926
OTE	Ommastrephidae spp.	737	717	281	392	279	711	3 435	2 440	2 696	6 628	2 287	6 390	8 733	2 501	4 680	504	2 548	1 199	2 886	5 387
2010	. Eledone spp.	20 367	17 809	13 971	13 279	21 303	11 466	6 661	19 623	12 307	9 181	14 997	13 498	11 175	11 858	7 514	3 468	4 091	2 604	1 722	3 092
	Trisopterus spp.	1 450	1324	1 255	1188	5 037	4 179	2 997	3 027	2 396	2 977	2 744	4 827	9966	3 492	3 678	1441	2 176	2 360	2 226	1 963
	Octopus vulgaris	3 314	3 180	3 209	1 078	2 681	5 060	4 616	3 627	2 465	4 066	2 745	4 614	2 701	3 483	3 761	1 335	1 730	1 586	2 010	1644
	Cepola macrophthalma	10 922	11 822	8 838	9 667	10 185	8 123	10 640	14 428	6 631	6 954	9 853	9 292	7 806	5 810	4 361	1 624	2 283	1 078	1 278	1 265
	Trachinus spp.	2 926	4 687	2 743	3 238	2 284	2 614	2 366	3 420	3 034	3 872	3 217	2 888	3 896	2 372	1 453	726	727	558	982	823
	Parapenaeus longirostris	356	471	0	0	0	0	79	605	1 191	1 100	1 112	852	1 838	3 173	14 258	10 113	9 984	11 443	13 971	17 479
	Phycis spp.	17 234	12 545	11 143	7 042	16 052	16 160	14 029	11 443	8 596	12 048	9 755	7 912	9 756	9 584	10 567	11 680	10 762	14 502	7 104	9 620
	Ommastrephidae spp.	2 895	3 491	2 144	3 431	3 279	1 973	5 457	4 870	5 115	8 252	1691	3 627	3 962	1 785	3 017	1 109	4 827	1 772	2 639	7 804
	Merluccius merluccius	15 934	28 807	16 212	15 411	17 866	10 546	12 946	23 094	8 883	12 578	7 802	8 692	9 919	7 685	8 895	5 580	5 733	6 548	2 500	6 313
OTB2	Trachurus spp.	2 507	2 441	1 012	750	3 100	10 228	8 475	7 876	3 901	3 512	1 867	998	5 187	753	2 654	1166	1 390	3 026	3 166	5 631
	Nephrops norvegicus	13 670	12 095	16 897	13 169	16 285	21 464	21 213	29 168	16 870	17 532	14 734	14 496	14 483	7 292	9 357	11 232	12 394	9 958	6 278	4 972
	Lophius spp.	10 155	11 041	6 662	6 983	10 968	12 612	13 400	8 554	5 862	6 128	4 494	4 847	3 662	4 329	4 113	3 029	3 281	3 311	2 801	3 269
	Eledone spp.	11 606	10 879	8 816	10 179	12 622	4 681	2 006	7 325	4 246	4 210	3 666	6 085	2 458	2 678	5 167	4 875	4 588	5 397	1 783	3 185
	Micromesistius poutassou	53 864	62 867	51 952	74 247	119 680	229 891	65 705	70 858	29 673	22 395	8 130	13 156	22 727	4 193 î 152	7 741	5 844	9 594	17 623	6 648	2 767
	Lepidorhombus spp.	1/0 2	24/0	1 423	3 134	5 347	4 824	4 898	4 61/	3 489	2 318	2 685	3 030	T00 7	3 460	3 /8/	2 650	2 346	1 998	1//2	1 989
	Aristeus antennatus	38 216	25 217	22 970	9 038	15 738	37 612	65 112	45 697	31 649	43 347	45 478	40 541	30 211	40 510	42 009	35 362	35 238	36 311	31 668	32 098
	Gambes varies	32	2 756	2 669	868	1 279	2 361	2 946	4 250	2 002	2 285	2 303	2 313	2 415	2 777	2 952	3 149	2 253	3 335	3 339	3 083
	Phycis spp.	3 463	3 275	3 129	1 638	2 716	4 517	4 583	3 310	2 922	4 293	3 528	4 168	5 025	4 042	3 088	3 652	2 411	4 503	2 887	3 033
	Merluccius merluccius	3 861	4 871	3 623	1 230	1 895	3 208	2 572	3 249	2 151	4 604	2 517	4 699	3 280	2 637	1 986	2 061	1 391	2 720	2 526	2 340
OTB4	Lophius spp.	1 256	1 349	1 226	748	1 050	1 750	2 519	1 410	1 198	1 395	1 268	1 895	1 787	1571	1 331	1 259	797	1 112	1 323	1 066
	Ommastrephidae spp.	290	202	195	302	354	521	391	349	644	929	466	626	341	379	216	213	548	279	256	485
	Taurons	129	253	397	212	238	286	197	287	309	387	180	279	358	422	347	669	170	324	635	417
	Micromesistius poutassou	5555	3 834 4 37F	2 104	202 2	2 021		005 5	70 020	3 248	2 0 1 0	1 219		178	1/40	208	4/8 2/6	105 For	1 340 700	166	200
	Neprilops norvegicus Concer conneer	906	C/C T	316	091	015	1 400 1	1 //0	200	200	OTO T	066	200	303	305	757	120	TOC	0C/ 213	C24	70C
	conder conder	~~~	110	010	2		8	20	2	100	170	ŧ	700	200	200	2	000	ţ	077	ł	201

Table 34. Species composition and landings (in kg) by *métier* for Arenys de Mar.

Table 35. Species composition and	l landings (in kg) by <i>métier</i> for Barcelona
-----------------------------------	---

		000	cour	VUUC	3005	2000	2000	0000	2000 2000	2010	3011	2012	2012	2014	2015	2010	2017	2010	2010	0000	1000
	:	7007	2003	2004	c007	9002	/007	2002	5007	0102	1102	7107	5102	7014	CTU2	9107	/107	8102	6102	7020	N
-	Mullus spp.	27 120	30 716	24 921	19 826	19 851	31 180	18 111	30 978	28 793	46 027	34 401	39 660	29 727	27 747	39 678	36 926	25 824	32 584	36 648	ព្
	Trachurus spp.	8 962	11 916	14 252	13 596	12 570	16 406	21 422	116 987	30 631	124 180	35 287	32 384	60 839	22 031	19 807	22 024	14 078	22 110	23 068	5
4	Pagellus acarne	11 889	19 841	15 131	609 6	8 749	9 975	11 355	24 450	22 261	159 230	29 753	29 896	20 035	9 946	10 315	8 909	11 268	12 981	18 175	
4	Pagellus erythrinus	3 535	5 503	5 534	5 072	5 285	5 121	7 428	11 742	16 062	32 111	18 994	27 484	22 318	15 100	15 892	15 607	10 927	12 146	15 086	∞
A taro	Merluccius merluccius	11 629	29 313	21 157	14 310	11 071	16 654	23 010	29 584	18 915	62 934	36 883	33 362	27 475	18 085	26 145	21 553	8 811	8 646	8 661	∞
	Sparus aurata	515	1 296	3 153	1 459	3 325	2 586	4 526	5 152	4 422	16 495	7 832	5 777	7 453	4 681	2 294	3 924	14 475	4 918	1 147	S
7	Loligo spp.	3 142	7 715	8 889	7 098	5 051	3 940	5 531	8 916	6 227	26 918	13 846	17 296	17 571	4 122	6 614	3 808	4 899	2 439	3 423	4
7	Lophius spp.	7 542	9 181	6 162	3 200	2 890	8 783	5 011	9 102	8 949	10 387	9 141	10 479	10 295	4 987	7 019	5 182	2 715	7 634	4 912	Ĥ
J	Octopus vulgaris	3 772	2 356	2 812	3 143	3 710	4 838	3 556	3 649	3 853	4 323	6 163	17 614	6 602	7 352	9 764	6 031	3 646	5 786	2 108	-
Ł	Eledone spp.	8 294	11 530	16 295	11 676	4 698	12 908	3 401	18 518	12 352	18 329	19 921	11 739	5 802	2 675	4 410	3 762	559	4 339	2 115	÷
1	Trachurus spp.	351	337	202	2 651	9 548	107	6 920	06	45 286	1 152	129	1833	20 901	795	22	111	16 351	11 676	9 914	16 1
<	Mullus spp.	5 443	7 788	3 149	1823	9 550	31	4 225	1 662	12 053	1 122	181	7 143	7 644	4 958	4 179	3 512	26 714	9 087	7 168	108
C	Ommastrephidae spp.	964	78	186	263	135	425	2 169	1 065	2 768	481	488	2 051	5 293	288	469	39	17 958	1 213	4 568	9 2
V	Merluccius merluccius	7 869	4 669	7 007	10 280	20 384	4 976	6 729	10 875	15 120	3 193	4 769	14 195	18 267	5 558	993	1134	16 534	7 360	4 980	9 2
4 CATO	Phycis spp.	80	6	29	59	84	8 764	13	17 584	8 709	410	966 6	241	6 682	129	9	5	5 863	6 756	3 864	909
	Nephrops norvegicus	12	2	4	10	18	394	28	8 327	8 979	229	7 120	187	11 089	67	0	0	6 041	3 690	3 536	9 6
V	Micromesistius poutassou	1 788	4	31	341	324	22 288	46	37 507	16 143	4 721	4 273	133	21 383	25	0	0	3 772	9 433	4 096	3 26
7	Lophius spp.	8 088	5 248	4 858	3 433	7 390	2 014	2 867	3 340	4 006	1 226	2 982	7 265	6 180	4 659	1 955	3 055	8 683	3 112	2 660	2 50
*	Aristeus antennatus	19	18	133	S	64	20 415	30	31 097	2 579	44 759	33 109	170	177	13	0	0	159	56	263	176
7	Eledone spp.	19 895	16 097	22 020	14 943	20 976	109	8 547	1 727	4 410	227	1 267	12 094	2 903	3 902	2 895	2 554	5 533	2 825	1 024	1 23
4	^p arapenaeus longirostris	391	490	1 097	1 031	368	17	199	622	1 649	884	1 763	2 311	3 396	4 698	17 507	10 157	9 225	15 661	13 054	19 2
4	Phycis spp.	11 023	10 731	9 632	11 695	19 291	15 194	19 905	12 546	10 504	15 507	15 454	14 158	12 449	12 734	13 316	10 346	10 484	18 982	8 513	12 2
V	Merluccius merluccius	8 473	20 364	15 683	21 685	26 701	12 097	19 426	22 238	16 187	26 806	26 127	27 509	18 707	15 935	14 302	11 803	10 634	14 306	6 215	11 9
<	Nephrops norvegicus	7 180	10 502	10 413	12 376	14 909	16 584	21 982	18 846	16 469	15 424	24 252	24 699	22 163	16 564	14 831	9 430	14 530	16 806	9 175	80
V	Micromesistius poutassou	30 373	28 513	34 462	55 250	95 941	79 321	61 765	33 952	31 781	190 342	19 966	30 349	17 463	7 127	11 805	9 807	6 604	18 678	13 286	8
	Ommastrephidae spp.	1 059	1 176	971	2 959	1 668	1 105	5 359	4 858	6 480	14 044	3 747	6 749	2 634	1 809	5 382	722	2 312	859	2 499	7 6
7	Lophius spp.	4 174	7 161	6 012	8 071	8 670	7 430	9 757	6 962	6 209	5 956	8 509	8 885	3 457	4 623	4 600	1 503	2 197	2 638	1821	е С
	Trachurus spp.	116	1 958	2 031	6 133	6 601	7 880	26 802	11 050	5 389	79 219	10 584	7 861	274	5 645	231	414	245	810	871	14
F	Eledone spp.	5 225	7 297	8 274	12 046	11 138	66/9	5 055	6 659	5 162	6 755	7 855	10 697	2 631	3 093	4 613	2 756	2 948	5 875	959	7
-	Mullus spp.	1 112	5 714	5 832	5 691	5 937	4 771	7 255	5 211	1 277	13 922	6 950	7 642	151	658	1/1	47	210	312	44	
*	Aristeus antennatus	24 058	17 542	18 921	16 246	11 676	18 757	43 277	30 754	47 417	39 252	62 674	74 572	33 749	69 126	63 269	38 607	38 896	39 749	41 542	32
4	Phycis spp.	7 975	8 178	5 179	6 450	4 081	3 862	9 144	6 884	13 189	19 299	3 741	14 414	6 385	8 511	6 141	5 441	5 607	8 041	5 362	5
9	Gambes varies	3 590	3 885	4 225	2 536	1521	1 188	2 751	5 045	3 794	3 168	2 363	5 209	2 554	5 432	3 723	3 271	1 805	4 444	4 141	ω 1
V	Merluccius merluccius	2 968	3 625	3 287	3 733	2 201	1882	3 283	5 618	6 313	8 340	1 746	6 565	2 538	3 745	1 981	1 430	1 472	2 514	1 759	17
ATPA L	Lophius spp.	2 228	2 105	2 048	1570	1 191	1 175	3 057	1832	2 704	2 553	458	4 838	3 123	3 562	2 404	1 626	1 363	1 692	2 057	173
	Necora puber	0	0	0	0	0	0	0	0	968	597	1 709	1651	994	1 050	1 086	738	1 158	1511	1 794	143
V	Micromesistius poutassou	6 420	3 373	3 809	3 838	3 949	487	14 966	443	10 892	10 704	66	6 303	2 296	4 054	1521	450	782	1 132	1 709	10
	Taurons	783	670	1 134	962	383	74	647	1 005	1 375	531	513	1 273	585	807	910	735	395	943	1 069	5
2	Conger conger	770	642	567	443	575	586	1 652	856	991	943	696	1 292	364	907	796	586	718	929	628	ŝ
<	Nephrops norvegicus	1 074	624	357	76	62	373	742	1488	2 125	6 361	308	6 357	537	2 804	85	106	280	167	258	~

Table 36. S	Species	composition	and I	andings	(in kg)	by métier for	Tarragona.
					·		<u> </u>

								-	Cent	L O											
		2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
	Mullus spp.	24 623	23 425	20 639	19 940	36 183	32 818	17 820	19 228	15 098	22 148	14 353	16 690	19 193	22 316	50 778	30 385	25 265	32 038	27 713	23 886
	Eledone spp.	12 779	11 500	10 504	14 466	26 179	16 871	23 330	20 603	5 167	13 968	13 147	19 274	12 782	43 599	91 136	21 438	15 517	47 418	10 395	20 267
	Ommastrephidae spp.	2 122	1 030	346	544	644	1 217	13 192	3 528	718	8 934	2 953	3 340	5 829	6 724	45 267	5 628	11 815	16 460	3 759	19 095
	Citharus linguatula	7 802	8 575	5 165	4 406	10 143	10 827	11 882	8 392	2 432	5 822	4 052	3 933	3 863	12 569	24 666	8 955	11 633	19 734	4 876	12 833
1010	Merluccius merluccius	25 614	51 378	15 743	27 638	92 017	25 183	59 829	32 283	5 481	21 537	670 6	13 793	11 886	28 082	41 601	12 204	19 805	21 369	7 035	12 453
	Pagellus enythrinus	8 210	11 587	8 699	9 045	11 241	12 852	10 320	8 447	6 299	11 859	3 487	9 587	9 388	10 839	18 394	11 000	6 984	9 523	6 551	9 651
	Pagellus acarne	12 201	12 848	13 952	9 080	10 568	12 408	6 342	8 733	6 736	11 554	5 994	4 226	8 297	4 326	4 328	7 245	6 283	5 717	8 716	8 770
	Trachurus spp.	18 631	17 701	10 811	11 623	32 118	41 467	46 128	14 152	15 659	17 209	5 754	9 866	25 596	13 928	20 145	14 603	8 109	14 410	12 092	7 683
	Loligo spp.	16 346	12 162	12 263	14 246	17 208	12 910	8 102	7 899	2 569	7 520	8 275	6 274	5 853	3 386	4 909	2 185	2 568	1862	2 424	3 953
	Octopus vulgaris	11 291	9 361	12 174	191 01	17 474	13 276	13 489	9 214	9 366	9 206	2 857	5 311	4 985	7 324	606 6	6 118	4 492	11 402	3 655	3 891
	Ommastrephidae spp.	7 778	5 426	8 553	8 155	2 182	8 904	30 168	23 935	49 773	74 932	41 863	49 159	66 761	12 739	38 391	12 493	23 998	11 321	43 738	34 579
	Eledone spp.	65 961	48 409	110 214	106 881	80 146	61 055	38 203	93 831	120 237	85 802	123 793	164 375	95 058	58 665	30 873	55 649	25 927	18 012	41 719	15 031
	Merluccius merluccius	55 401	59 543	76 649	68 822	59 700	39 049	94 324	89 405	71 183	63 378	73 718	73 056	40 663	23 945	41 711	16 900	9 776	7 487	18 110	9 616
	Trisopterus spp.	17 288	13 924	17 076	30 235	40 850	34 723	9 007	14 519	16 368	18 472	30 574	30 816	17 582	16 706	11 330	16 689	9 743	7 523	11 156	4 660
COTO	Citharus linguatula	18 473	$14 \ 148$	19 087	15 290	13 270	17 666	15 587	17 737	16 428	16 586	18 692	19 631	13 405	8 098	1 792	14 648	8 197	2 484	9 887	4 557
	Trachurus spp.	5 726	5 638	14 780	35 203	17 628	49 024	35 066	34 900	33 570	20 556	20 371	17 237	18 236	10 847	7 217	14 051	3 740	14 900	27 845	4 482
	Cepola macrophthalma	20 758	16 289	17 011	20 287	21 552	13 866	7 708	11 588	11 047	8 536	5 728	5 005	4 873	1813	322	1831	400	3 893	13 804	3 736
	Lophius spp.	5 619	6 405	11 763	14 342	22 523	14 981	5 126	22 149	24 013	16 177	14 052	30 410	21 455	8 768	9 980	11 827	7 389	5 104	15 088	2 323
	Gobidae	56 853	62 072	69 684	68 354	57 696	54 136	48 301	10 927	6 880	5 912	5 526	8 260	7 219	3 412	436	5 458	2 615	377	2 723	94
	Osteichthyes	0	0	0	0	76	19	S	39 022	39 039	38 376	43 530	36 950	30 974	22 486	6 116	18 480	11 634	0	0	0
	Parapenaeus longirostris	2 149	1 916	0	294	1 122	506	1 338	3 614	2 304	3 186	2 999	2 719	3 815	2 958	1 563	1 697	29 399	22 298	19 650	45 000
	Ommastrephidae spp.	7 768	7 204	7 170	8 814	3 579	4 464	19 129	11 944	20 817	27 239	13 634	11 460	39 324	7 651	10 018	9 247	34 703	3 408	6 155	43 080
	Merluccius merluccius	58 466	78 950	65 761	94 944	88 105	48 450	33 015	55 476	32 522	31 216	45 928	48 056	67 907	45 364	44 014	41 193	49 686	36 798	14 845	41 707
	Micromesistius poutassou	163 023	99 958	92 977	109 290	195 956	169 103	<u>98 013</u>	64 120	69 503	77 050	41 342	49 669	57 188	21 673	23 183	22 991	19 533	27 596	10 622	19 977
OTD	Phycis spp.	18 782	18 333	13 632	22 006	25 527	22 637	13 989	12 221	11 102	13 916	11 520	20 411	15 573	18 712	16 663	10 433	19 401	13 525	8 264	15 095
	Nephrops norvegicus	49 911	27 269	43 670	47 859	57 868	49 466	30 874	43 870	35 606	27 439	34 375	44 511	36 721	19 999	21 475	15 492	14 131	17 369	11 302	12 507
	Eledone spp.	46 557	28 878	34 065	40 068	25 440	21 436	13 390	18 235	36 554	24 235	32 157	25 939	36 790	23 470	16 912	19 762	28 753	14 246	8 379	11 640
	Lophius spp.	21 294	19 571	18 088	30 900	35 824	26 784	14 699	12 104	18 036	17 887	21 871	21 832	25 603	16 695	11 007	13 515	15 792	9 017	4 526	10 633
	Gambes varies	11 710	7 361	6 752	2 733	818	366	1 309	2 405	4 062	3 785	7 542	7 732	17 430	15 061	23 937	29 162	11 137	2 463	2 641	4 122
	Trisopterus spp.	9 530	9 824	5 333	962 6	18 316	12 894	4 083	4 598	8 803	11 174	17 299	9 838	17 239	4 636	1 344	4 805	6 896	932	269	2 602
	Aristeus antennatus	0	0	27 201	12 388	23 362	43 137	63 268	58 039	89 384	82 811	89 195	73 075	49 907	47 286	31 052	41 799	60 980	44 004	29 948	24 428
	Phycis spp.	9006	8 311	3 792	2 794	2 562	10 755	14 565	12 889	13 682	12 998	15 191	16 892	13 618	13 015	12 208	11 768	9006	13 800	9 616	7 729
	Merluccius merluccius	11 015	18 537	4 694	3 035	1 297	17 642	16 825	20 071	14 877	17 217	11 933	14 294	13 480	8 396	5 334	7 828	12 002	9 019	5 441	6 201
	Taurons	3 404	4 100	4 201	2 301	1534	3 697	3 888	5 955	5 172	3 683	7 776	6 858	4 963	5 116	6 850	4 799	4 139	5 298	4 297	5 288
OTPA	Micromesistius poutassou	10 812	4 649	2 843	2 490	1 209	28 879	41 900	13 576	16 920	6 429	6 059	4 786	5 289	5 393	4 772	2 406	2 713	1 923	3 834	2 332
	Liocarcinus depurator	0	0	0	0	0	0	748	925	2 039	397	802	2 165	3 801	3 867	6 262	4 276	3 599	5 917	9 431	2 178
	Lophius spp.	3 019	2 741	1 986	1 496	1 108	4 799	5 396	4 864	5 015	4 408	7 110	6 025	5 362	3 237	2 494	2 347	2 411	2 522	2 681	2 078
	Ommastrephidae spp.	762	948	474	591	383	985	4 293	1 387	2 639	1 938	1412	2 193	2 213	1 950	2 158	1517	2 493	2 079	1 356	1551
	Nephrops norvegicus	6 961	11 511	2 222	134	45	7 244	14 822	14 200	22 755	22 838	16 104	14 725	11 500	6 438	2 262	3 412	5 778	2 878	3 910	1 332
	Parapenaeus longirostris	36 590	27 414	0	42	831	863	1 456	9 337	6 353	4 691	6 826	6 240	4 185	6 826	3 791	7 194	1 475	5 987	6 567	521

									с С	te r											
		2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
	Mullus spp.	64 140	52 081	53 117	31 002	60 190	54 330	32 834	40 270	33 179	46 499	32 817	38 855	39 111	39 821	59 504	55 589	34 115	47 113	54 717	31 427
	Pagellus acarne	40 779	34 153	34 591	24 419	37 626	33 771	38 734	28 522	23 612	29 681	20 850	23 519	31 962	32 530	22 716	27 193	20 276	26 824	33 420	24 425
	Trachurus spp.	32 719	30 804	37 255	22 798	58 977	22 138	32 746	39 993	29 653	42 495	7 540	22 163	18 812	20 339	15 069	20 273	13 522	22 460	40 479	21 581
	Pagellus erythrinus	13 103	11 328	11 376	10 427	12 600	14 685	14 344	10 009	10 335	21 318	6966	17 874	14 370	16 923	13 703	14 566	11 442	17 491	18 610	15 157
OTB1	Loligo spp.	23 999	20 073	17 695	9 732	14 779	8 233	11 033	11 997	9 216	19 364	10 292	15 928	8 804	3 222	6 049	4 146	2 459	2 254	3 682	7 816
	Merluccius merluccius	62 864	76 947	38 889	9 942	27 045	7 379	11 597	13 017	5 813	13 916	1 893	8 859	3 964	4 108	4 014	5 117	4 834	4 010	12 051	7 141
	Octopus vulgaris	43 525	22 374	15 977	23 277	20 852	20 705	14 244	12 227	9 106	17 685	12 797	13 282	9 504	12 264	11 436	7 519	5 820	5 887	7 693	4 559
	Sepia officinalis	14 625	19 589	12 212	9 283	17 040	13 337	8 086	15 772	8 821	9 462	1919	5 062	3 123	4 584	5 554	4 170	4 855	5 629	4 517	2 454
	Eledone spp.	26 743	30 197	29 997	12 823	18 359	8 652	4 347	11 414	6 774	12 127	1 453	10 391	2 568	3 014	4 762	4 576	1 762	2 564	9 716	1 726
	Osteichthyes	25 825	23 429	17 950	8 421	12 788	8 914	6 746	7 497	4 446	8 111	2 296	3 776	4 527	4 649	4 411	3 691	724	0	0	0
	Merluccius merluccius	15 109	14 730	35 451	67 277	57 415	29 529	90 539	70 101	41 329	31 167	57 891	25 008	21 149	15 894	13 663	10 058	20 476	13 306	2 450	6 299
	Mullus sop.	2 035	2 421	4 751	12 378	7 111	13 436	10.543	6 884	10 779	777	19810	9 718	10 446	13 227	17 008	14 221	P07 20	14 789	312	4 773
	Ommastrephidae sop.	0	0	0	0	0	0	0	13 492	19 304	27 946	19 071	11 048	20 186	3 854	10 427	2 784	8 315	5 694	8 002	4 029
	Trachurus spp.	504	451	1540	50 921	32 016	81 000	110 147	110 919	71 965	12 160	40 146	19 205	29 033	13 445	14 518	12 323	16 444	22 578	11 299	4 014
	Lophius spp.	4 423	4 386	8 822	11 385	14 059	8 679	10 014	24 759	20 397	10 135	16 910	22 382	24 925	9 877	12 659	10 352	9 748	13 814	2 320	3 438
0182	Eledone spp.	29 203	24 416	55 684	59 155	41 706	26 332	26 131	49 531	35 683	20 262	55 754	44 959	25 253	20 882	15 140	11 222	12 602	11 450	1 353	3 117
	Citharus linguatula	14 091	13 403	17 357	15 279	9 185	10 836	11 006	7 094	5 804	3 722	9 462	7 057	4 709	5 333	4 739	4 184	5 142	4 553	74	2 827
	Trisopterus spp.	2 681	3 359	2 771	13 794	19 284	12 552	11 014	9 908	6 787	5 007	21 463	9 304	13 801	6 657	8 825	6 499	5 519	9 234	999	1 125
	Scomber scombrus	83	1 156	3 496	23 985	25 750	26 051	27 768	8 991	5 060	10 570	8 978	1875	403	1 464	586	451	2 738	651	0	701
	Osteichthyes	9 201	10 530	13 446	19 314	18 325	13 516	33 339	15 692	10 537	6 507	15 485	7 942	9 833	8 597	6 657	5 570	1 281	0	0	0
	Parapenaeus longirostris	0	0	0	0	0	51	154	162	1 334	1377	868	1 401	3 621	4475	15 003	12 184	16 090	12 696	21 242	28 024
	Ommastrephidae spp.	0	0	0	0	0	0	0	6 231	15 481	30 542	3 382	10 219	5 140	2 421	9 276	3 537	15 418	1 921	3 118	22 614
	Merluccius merluccius	33 460	37 533	35 858	65 346	61 743	35 904	32 745	36 556	24 925	37 975	19 050	26 613	22 408	13 182	13 567	13 228	19 175	13 352	5 463	13 789
	Phycis spp.	18 720	11 521	13 823	15 735	22 764	24 861	17 380	13 617	15 698	15 343	12 822	13 521	10 787	13 324	13 155	14 483	18 326	18 076	8 016	13 698
CITO	Nephrops norvegicus	16 707	11 129	19 511	21 340	24 812	28 526	24 686	35 370	34 767	26 412	29 997	27 658	20 375	12 767	10 971	12 197	13 180	12 790	8 053	8 336
	Eledone spp.	30 535	13 687	28 047	37 068	27 922	23 091	14 263	17 131	19 122	19 969	12 453	23 233	8 705	13 443	13 712	13 196	18 554	14 186	5 357	8 071
	Trachurus spp.	4 220	851	4 658	5 422	9 568	23 802	20 976	1 403	2 413	8 180	194	1 666	1 866	6 742	2 895	9 422	6 345	4 564	1 893	7 737
	Micromesistius poutassou	106 822	59 049	80 541	110 891	220 134	238 518	107 316	44 478	44 563	61 408	7 946	26 978	15 201	7 766	11 189	8 363	11 331	11 257	6 547	7 163
	Lophius spp.	15 690	10 478	15 110	19 175	22 000	22 952	16 943	11 247	16 069	17 917	10 802	16 132	10 627	10 798	9 141	9 967	12 951	7 508	3 838	6 598
	Osteichthyes	17 833	11 450	16 340	26 207	21 680	19 937	29 756	7 728	9 027	9 935	5 257	7 866	4 715	5 398	6 590	7 560	652	0	0	0
	Aristeus antennatus	37 412	32 515	20 104	11 438	12 867	28 416	55 990	43 086	45 298	57 892	57 932	52 318	37 260	54 142	42 306	46 008	53 522	42 850	54 038	39 349
	Phycis spp.	9 342	10 460	5 372	4 972	1 653	7 457	9 379	12 050	8 929	10 885	10 360	11 410	9 641	10 476	9 494	9 716	8 619	11 928	7 489	6 808
	Gambes varies	0	0	0	0	0	2 704	3 096	6 263	3 197	4 260	4 956	3 789	3 196	5 999	3 584	4 211	2 638	4 592	5 644	4 169
	Merluccius merluccius	5 975	6 257	3 837	3 047	1 048	6 918	5 750	9 809	6 868	10 995	6 195	6 194	7 017	4 443	3 570	4 141	4 646	6 445	3 959	2 587
Lato	Taurons	1 856	2 239	1 934	818	570	1 395	1 628	2 972	2 104	2 366	2 962	2 663	2 474	2 003	2 121	1 855	1 145	2 480	1 925	2 390
	Lophius spp.	3 102	3 671	1 700	1 352	953	3 009	4 159	4 236	3 176	4 126	3 160	3 793	3 701	3 717	2 402	2 357	2 002	2 316	2 470	1833
	Conger conger	1 501	1 302	958	755	599	2 242	2 820	3 104	2 320	2 353	2 440	2 322	2 256	2 436	2 299	1851	1 753	2 183	1 053	1 726
	Micromesistius poutassou	7 553	6 592	2 556	2 276	324	12 687	17 577	6 874	4 301	4 992	2 104	2 032	2 136	2 676	2 325	1 043	1 372	1 344	1 042	791
	Nephrops norvegicus	2 478	2 026	629	35	174	1 795	2 456	2 978	4 671	5 777	1 968	1 972	1 211	1177	567	876	1 208	1 238	1 666	555
	Osteichthyes	3 534	3 628	1847	2 285	504	2 887	1 927	582	382	502	459	308	259	230	131	333	24	0	0	0

Table 37. Species composition and landings (in kg) by *métier* for Vilanova i la Geltrú.

								S	- -	L											
		COOL	5000	POOL	3006	2000	2000	0000	, autor	2010	1011	2012	2010	2014	301E	2016	2017	2010	2010	0000	1000
	Mullue con	5 030	15 915	21 225	15 3/5	75 914	33.481	7 558	8 310	7 018	8 918	13 887	15 701	CZE 66	20.677	13 237	905 6	105 201	25 595	21 901	17 486
	Pagellus erythrinus	2 652	17 637	15 549	15 634	16 322	26 404	8 423	8 107	6 296	9 644	9 778	13 197	21 550	19 834	8 548	5 049	16 493	13 729	9 789	11 413
	Merluccius merluccius	4 171	23 730	42 449	14 625	28 965	18 768	5 205	3 771	2 387	1 760	6 135	12 294	10 376	13 520	3 925	3 692	20 858	13 378	8 040	10 882
	Pagellus acarne	3 638	8 547	19 176	13 190	13 920	9 552	1863	3 966	6 245	609 9	9 187	9 212	19 259	9 873	2 497	2 196	6 875	11 190	8 120	6 750
OTDIA	Eledone spp.	1 317	1 053	13 360	1 733	8 273	2 344	1 983	3 514	1 900	841	7 677	18 654	13 813	12 009	7 209	4 978	1 788	15 517	14 213	6 101
TEID	Trachurus spp.	7 870	22 576	21 751	17 510	33 758	45 272	8 483	7 154	6 446	7 156	4 833	16 342	19 199	13 526	5 849	6 703	13 754	15 095	16 177	5 661
	Squilla mantis	4 816	23 917	22 237	11 756	20 438	15 110	2 377	2 936	2 002	1 732	3 142	7 795	4 759	3 815	12 880	7 549	8 190	7 023	10 531	5 554
	Sparus aurata	1 272	14 775	8 491	10 770	24 857	46 581	8 236	2 603	4 117	5 673	5 165	7 324	8 204	6 895	2 274	636	16 291	1 278	853	2 595
	Octopus vulgaris	6 688	17 602	18 874	22 157	30 762	29 424	7 747	5 942	5 992	7 058	8 346	5 874	10 119	9 488	6 341	6 345	7 767	2 657	2 849	2 572
	Osteichthyes	431	17 437	18 261	8 110	48 978	15 816	1 766	82	227	2 184	134	8 069	10 306	9 115	4 877	4 081	44	0	0	0
	Trachurus spp.	12 892	2 465	62 471	150 961	154 120	160 173	106 611	79 448	36 796	52 248	17 749	8 183	3 630	3 945	20 527	8 105	20 560	15 631	7 691	12 394
	Ommastrephidae spp.	1 059	1 047	2 597	5 068	3 983	8 957	15 057	10 614	12 683	29 642	8 420	2 161	2 691	4 895	27 359	4 629	22 958	5 506	9 212	6119
	Mullus spp.	15 731	3 917	606 9	12 130	21 350	17 617	11 048	12 875	13 464	15 005	9 154	3 316	3 913	6 392	27 766	15 548	9 926	9 398	14 753	4 390
	Eledone spp.	2 161	9 689	22 071	38 088	61 424	27 549	22 787	26 745	39 854	37 488	21 822	13 779	14 045	16 674	25 563	4 519	18 737	5 479	12 076	4 059
01010	Merluccius merluccius	17 595	13 824	31 098	62 230	68 789	32 076	35 820	73 670	36 581	48 290	24 930	8 346	7 310	15 518	34 641	8 587	15 701	13 176	15 175	2 941
atalo	Scomber scombrus	2 140	3 055	41 300	83 754	162 492	49 009	69 878	11 732	7 017	12 523	7 549	716	455	1 372	9 212	2 541	1 032	3 777	2 719	1 722
	Trisopterus spp.	6 332	11 217	14 794	38 279	64 886	44 597	15 470	26 954	22 908	34 936	19 428	10 181	12 657	8 942	15 885	3 451	14 108	10 038	3 866	1481
	Squilla mantis	18 212	14 580	2 785	3 829	3 727	1 316	3 629	21 714	18 714	13 850	6140	7 121	6 548	8 092	10 934	3 080	12 563	10 330	3 666	1 273
	Lophius spp.	240	2 997	5 763	14 786	35 881	17 179	6 685	12 899	10 168	9 398	5 560	5 936	2 986	3 232	12 696	3 504	7 513	3 475	4 004	633
	Osteichthyes	18 537	16 564	12 096	23 371	82 186	21 041	37 530	13 995	11 619	4 129	157	81	5 785	7 326	14 220	4 194	2 094	0	0	0
	Trachurus son.	4 062	8 119	5 262	21 758	13 236	61 079	53 956	8 859	28 525	8 247	12 635	22 332	46 841	42 357	14 112	18 470	11 669	66 423	35 999	36 035
	Merluccius merluccius	44 120	41 971	14 439	43 853	0	27 174	229 061	54 877	106 230	43 740	79 681	83 958	41 464	21 377	18 894	25 843	75 263	38 438	8 658	23 705
	Ommastrephidae spp.	7 069	2 020	787	1488	617	2 617	59 057	19 478	79 052	23 859	58 206	36 490	43 646	18 929	10 614	8 503	45 644	23 147	5 138	19 577
	Eledone spp.	39 525	4 175	5 131	19 361	21 111	19 935	24 733	32 770	71 062	18 740	55 949	69 102	33 541	20 454	16 146	23 313	16 014	29 272	11 491	17 960
AL DIA	Mullus spp.	7 810	10 252	3 414	10 112	600 6	19 140	3 793	7 038	13 338	10 133	19 298	21 225	11 876	13 412	7 400	13 064	22 434	22 375	7 752	12 023
27010	Trisopterus spp.	16 324	1 099	906 9	22 689	6 828	3 647	12 651	5 495	35 975	8 517	18 258	30 628	18 670	19 464	8 943	17 229	13 161	19 664	5 471	7 094
	Lophius spp.	9 839	520	2 366	3 845	9 681	2 235	6 037	6 120	28 285	4 440	5 014	21 782	12 735	9 761	6 723	8 764	13 743	19 698	6 019	6 325
	Pagellus erythrinus	2 231	8 412	1 487	5 802	7 483	14 022	4 603	13 022	4 494	14 964	14 581	24 521	16 692	6 777	1 086	5 651	8 335	4 933	1 229	2 467
	Scomber scombrus	6 581	3 181	2 923	10 943	0	9 739	22 365	6 668	7 135	9 410	33 233	26 794	7 805	5 805	4 445	4 009	469	4 579	1744	1614
	Osteichthyes	433	19 047	12 114	18 832	60 384	32 672	6 648	26	166	201	1 762	18 813	11 048	12 904	5 187	10 418	857	0	0	0
	Ommastrephidae spp.	9 462	10 401	14 200	10 045	2 252	2 508	30 030	41 917	16 204 1	.04 414	33 252	55 202	85 217	14 363	47 196	18 195	10 656	526	36 793	40 234
	Merluccius merluccius	76 795	116 184	115 504	96 519	62 357	15 648	78 532	149 867	35 759	103 739	13 930	105 075	77 959	78 391	78 333	42 285	17 019	1882	31 259	25 362
	Eledone spp.	48 949	44 590	105 188	77 618	30 096	17 535	18 764	69 097	45 886	59 345	65 829	69 843	49 512	45 341	30 438	24 860	5 472	1 688	14 705	12 249
	Mullus spp.	13 164	14 134	11 877	10 533	6 965	7 769	8 607	5 077	4 133	6 733	13 074	12 108	13 884	13 592	16 909	21 274	1 098	582	13 186	7 188
01070	Trisopterus spp.	29 502	22 862	19 843	30 921	20 652	3 562	17 134	22 888	8 113	37 405	47 155	43 024	30 194	16 167	16 022	16 617	2 572	287	5 660	7 122
	Trachurus spp.	20 192	18 182	6 395	8 571	13 037	675	28 598	12 863	4 156	4 818	15 325	7 651	20 483	8 071	3 087	23 699	4 638	4 270	8 273	4 531
	Scomber scombrus	71 565	57 939	28 622	25 550	12 322	4 511	10 327	6 228	3 508	16 998	12 720	4 832	3 270	15 454	5 308	3 865	26	46	2 468	4 450
	Lophius spp.	7 016	13 038	17 369	18 393	8 412	8 966	3 759	25 039	14 785	29 605	27 206	40 584	36 935	16 353	20 627	16 199	3 599	1061	9 888	4 233
	Engraulis encrasicolus	25 686	24 219	48 710	23 479	30 541	16 950	1810	13 757	151	27 123	14 192	9 202	10 186	1 014	732	2 535	132	50	222	73
	Osteichthyes	46 893	44 813	51 072	29 644	13 105	18 830	450	475	140	454	1511	11 610	17 502	12 504	10 402	11 517	2	0	0	0

Table 38. Species composition and landings (in kg) by *métier* for Cambrils.

									s o u	ے ب											
		2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	201	6	2020
	Mullus spp.	38 862	32 533	33 885	33 975	35 616	39 759	16 400	15 920	26 054	16 913	14 810	25 780	24 466	12 691	48 853	34 669	40 518	34 398		48 158
	Squilla mantis	25 345	39 312	28 491	25 583	26 199	37 701	21 174	14 415	28 786	4 846	5 463	25 664	30 224	3 560	25 081	8 230	43 990	42 724		33 576
	Sepia officinalis	4 474	8 649	4 525	5 632	7 286	16 957	7 592	7 421	6 850	5 800	7 360	11 237	10 808	4 129	13 159	4 229	2 027	15 224		16 811
	Merluccius merluccius	5 490	6 339	7 137	14 232	10 424	13 897	9 064	2 430	6 200	1 759	1 075	7 842	3 061	1 730	6 128	3 891	11 914	11 093		6 317
VIALC	Sparus aurata	16 441	18 509	17 010	12 275	20 16/	46 618	20 062	14 985	22 301	32 083	17 374	31 820	28 927	11 351	25 571	13 638	26 923	7 890		15 054
HTOLO	Octopus vulgaris	17 948	9 964	11 316	22 547	13 317	35 059	12 882	10 705	18 567	10 286	9 570	14 859	12 240	5 949	25 181	10 409	14 652	15 144		11 833
	Pagellus erythrinus	4 768	7 357	5 068	8 412	8 687	18 249	7 163	5 768	10 873	9 545	7 699	18 454	15 019	10 302	32 240	11 827	28 666	18 071	-	9 843
	Trachurus spp.	5 459	6 122	9 197	8 695	8 087	24 307	7 214	3 715	7 641	6 394	4 185	14 576	18 703	10 660	24 857	20 515	23 503	22 929	ñ	0 813
	Conger conger	10 449	17 150	8 410	15 360	12 615	15 097	4514	4 103	7 041	1 455	2 127	5 281	5 466	1 931	4 607	2 574	7 342	7 506	0	032
	Mugilidae spp.	13 714	13 074	10 509	10 242	5 538	7 194	2 869	2 082	4 310	3 108	1 253	3 672	5 192	6 973	9 957	10 404	10 718	11 313		651
	Mullus spp.	9 635	15 053	3 192	12 369	14 906	7 964	9 573	12 382	11 991	22 625	16 595	2 564	14 056	11 981	9 240	18 224	13 957	22 447	26	293
	Trachurus spp.	5 373	7 582	953	10 489	14 728	17 012	14 453	18 123	9 838	14 458	6 413	3 297	9 466	1823	1 704	4 089	21 192	28 051	15	871
	Squilla mantis	9 321	10 836	18 579	17 117	10 180	2 611	10 001	20 909	8 178	23 695	24 256	22 087	17 677	32 524	1 956	40 209	30 664	8 247	16	321
	Scomber scombrus	5 847	7 273	4 564	12 817	13 792	7 905	4 948	4 128	4 957	9 373	7 752	694	2 774	614	4 812	1 023	2 335	5 184	14	342
01010	Merluccius merluccius	14 113	26 249	32 611	58 166	44 788	28 299	13 713	15 239	16 827	15 768	9 289	8 126	11 972	3 889	26 721	4 022	25 052	13 108	31	705
97910	Trisopterus spp.	4 013	2 057	9 445	20 178	10 922	6 206	1 003	3 986	7 156	4 741	4 606	7 506	6 720	2 916	10 060	4 749	21 829	8 437	16	508
	Eledone spp.	10 566	3 968	41 450	56 005	30 137	22 619	1 586	5 079	21 171	8 700	13 736	20 852	32 266	8 233	20 380	1 914	25 586	13 672	39	307
	Citharus linguatula	6 465	7 574	13 532	17 555	12 406	6 554	4 546	5 135	4 796	8 377	10 138	9 116	13 446	7 292	2 962	5 612	14 543	6 871	18	797
	Ommastrephidae spp.	686	944	1 326	2 383	565	2 597	5 494	1 094	3 447	11 779	3 175	1 586	10 300	<u>9</u> 98	16 258	811	33 639	4 948	38	719
	Osteichthyes	9 293	14 062	22 761	27 896	13 730	19 245	10 907	8 858	8 677	11 714	11 550	9 082	14 592	7 255	10 126	6 178	4 258	0		0
	Ommastrephidae spp.	1 222	2 326	945	1 532	1 08/	1 818	16 120	11 878	40 829	64 516	16 421	34 903	63 965	2 492	33 073	24 252	21 894	17 836	4	587
	Merluccius merluccius	26 669	41 352	36 530	36 727	45 785	27 368	84 356	75 343	83 605	111 573	59 704	55 711	68 729	14 865	44 330	46 555	46 484	32 964	-	542
	Squilla mantis	23 142	20 110	15 045	6 950	15 123	9 010	266	34 097	6 555	20 073	11 822	3 954	10 415	11 727	14 268	46 824	18 802	33 346	27	041
	Eledone spp.	43 278	28 462	28 294	29 199	46 985	24 489	7 896	47 926	104 472	106 115	82 153	82 278	90 546	16 028	41 941	51 381	8 230	48 109	25	080
Caro	Trachurus spp.	7 289	4 295	10 461	70 601	81 414	31 919	1 886	54 569	15 287	20 379	14 146	12 376	25 974	8 279	11 521	20 558	12 510	13 279	10	856
2010	Trisopterus spp.	16 037	16 527	6 587	22 231	34 402	24 091	4 538	20 838	36 572	63 095	40 693	28 924	37 285	3 083	17 307	36 407	16 802	27 123	11	536
	Citharus linguatula	22 909	15 851	10 556	6 012	15 122	16 410	3 392	19 560	15 041	26 459	18 705	10 796	15 565	8 757	10 919	25 489	18 446	26 819	10	443
	Scomber scombrus	2 202	8 649	9 623	36 379	44 572	5 785	6 645	17 119	14 921	30 409	14 088	5 988	11 740	13 417	24 456	14 182	23 805	6 760		838
	Lophius spp.	5 419	7 958	2 648	13 450	23 398	5 490	7 357	20 395	42 553	46 379	30 294	36 600	40 741	3 003	18 967	38 270	19 038	29 133	9	171
	Osteichthyes	25 643	28 279	17 595	16 253	24 841	24 275	14 153	26 942	29 406	51 199	35 866	27 333	41 298	14 673	21 189	42 045	22	0		0
	Merluccius merluccius	47 156	81 284	74 342	63 454	72 162	27 082	114 157	79 635	18 560	789	50 190	68 731	7 004	65 835	14 975	1 998	2 022	1 162		572
	Mullus spp.	9 543	15 178	13 194	3 547	14 896	15 025	11 533	4 767	2 260	76	12 519	18 422	1 203	20 848	066 9	1 376	1870	1 242		781
	Ommastrephidae spp.	4 802	6 280	6 627	4 787	2 295	2 934	22 669	21 560	1 887	138	24 363	26 151	1 356	18 539	16 702	403	3 612	185		832
	Lophius spp.	15 409	13 399	15 739	13 293	27 786	19 261	15 190	26 005	14 763	618	9 348	23 596	3 478	30 496	11 892	1411	963	707		479
OTDA	Trachurus spp.	5 002	10 524	13 202	4 212	7 842	23 303	91 953	3 856	6 072	25	8 707	16 508	639	19 464	8 263	926	861	2 268	-	346
100	Eledone spp.	39 458	29 537	53 892	38 083	44 219	21 628	41 209	52 306	32 084	172	63 626	112 074	18 944	77 582	27 885	464	469	312		114
	Scomber scombrus	28 913	60 360	36 412	28 077	85 682	34 246	74 643	8 514	885	330	49 085	42 863	214	22 637	1 702	107	277	13		138
	Engraulis encrasicolus	24 845	27 833	36 574	26 860	34 407	16 314	21 090	14 774	1 247	20	1 185	4 309	2	10 853	694	740	284	157		86
	Trisopterus spp.	18 887	16 429	18 095	17 127	33 489	18 145	23 384	15 019	10 077	52	14 792	26 165	8 876	28 173	12 951	270	217	16		25
	Octaichthyes	21 227	20.810	24 798	15 415	24 283	21571	47 569	19 039	14 263	202	16 108	25 796	7 158	51 354	20 231	645	284	0		0

Table 39. Species composition and landings (in kg) by *métier* for L'Ametlla de Mar.

Table 40. Species composition and landings (in kg) by *métier* for L'Ampolla.

								s	0 U	4											
		2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
	Sauilla mantis	2 374	7 502	7 038	5 743	4 795	4 896	2 516	7 204	4 183	5 341	3 074	4 850	3 213	2 453	3 374	4 989	6 894	4 355	4 284	5 858
	Mullus spp.	7 597	6 391	11 710	5 311	4 608	4 247	1 173	2 476	1 232	3 053	1 555	1 284	2 848	4 059	3 988	3 003	2 780	3 916	2 057	2 015
	Sepia officinalis	491	1551	1 455	1 296	771	2 792	1 350	1 704	908	2 087	958	1 246	1 665	1884	974	1 234	1422	2 106	1 163	1564
	Sparus aurata	2 905	3 145	4 069	2 456	2 497	3 454	820	1 131	768	1 589	1 062	3 750	2 242	2 332	1 231	871	1 672	1 755	971	911
CTB11	Octopus vulgaris	3 911	1 395	2 231	3 450	1 187	5 694	1 467	1814	1 015	1 783	1579	1 227	1 152	1711	1341	1 407	1 242	726	582	828
ALC: N	Mugilidae spp.	5 607	1 679	3 461	1821	588	457	37	385	294	240	125	300	248	1 425	278	380	135	609	262	525
	Trachurus spp.	481	526	1 582	1 209	1 187	3 556	399	1550	64	586	279	231	722	1578	547	701	969	801	564	517
	Conger conger	598	3 018	1874	2 370	2 116	1 979	531	1 919	1 509	1 973	827	803	576	592	832	757	750	812	537	322
	Dicentrarchus labrax	1408	3 763	3 580	1941	956	1 043	946	1 703	1014	1146	679	740	602	524	457	492	211	278	416	307
	Osteichthyes	377	846	2 519	2 166	1 430	2 206	798	2 764	830	1 033	715	1 287	490	785	540	707	0	0	0	0
	Mullus spp.	4 045	2 272	1 215	529	364	1 251	560	413	197	754	376	467	751	1 561	2 179	2 083	580	1 005	2 612	3 251
	Merluccius merluccius	720	3 286	5 068	1041	860	1 455	1 903	3 276	253	1 460	1 243	663	585	558	881	578	125	693	1528	1 854
	Squilla mantis	5 951	5 262	8 201	3 384	3 128	6 747	5 411	3 845	1 122	2 040	2 425	2 088	2 897	2 566	1 900	1 685	1143	4 078	5 000	1 528
	Eledone spp.	64	319	4 899	59	387	449	861	3 410	43	4 253	3 438	3 210	2 097	1 485	1523	788	408	337	2 640	677
OTRIB	Citharus linguatula	803	1 091	3 863	401	603	732	1 250	2 631	25	1 182	1441	1 092	844	0/6	500	699	522	881	1 450	629
	Trisopterus spp.	48	445	2 480	790	650	745	425	1581	37	1 971	2 326	868	780	708	815	886	357	540	853	568
	Octopus vulgaris	2 074	530	069	582	841	1 508	1 422	454	177	693	390	629	393	702	586	540	296	788	467	346
	Conger conger	2 278	1834	2 306	1 144	849	1 846	1 288	762	61	770	457	437	694	640	457	520	205	206	487	240
	Dicentrarchus labrax	662	1 076	2 028	1 415	1 532	2 268	1 585	222	508	502	301	236	453	332	243	59	17	389	197	2
	Osteichthyes	2 440	2 076	3 804	1 168	1 056	1 854	2 782	3 785	285	2 182	2 863	1552	892	843	847	1 599	107	0	0	0
	Merluccius merluccius	2 485	8 423	4 420	4 257	3 028	4 844	7 960	5 185	2 274	2 622	2 644	2 018	2 458	1 137	1 778	2 170	2 372	895	372	4 617
	Ommastrephidae spp.	230	909	236	108	59	301	1124	424	515	1 924	932	710	3 051	1 139	2 647	1 257	2 451	397	270	3 037
	Squilla mantis	4 697	5 163	1 764	3 164	1858	1 492	1 966	1 808	2 398	527	854	516	<u>933</u>	421	961	2 252	1 933	2 558	964	1 489
	Liocarcinus depurator	1 664	5 540	4 687	1 929	2 351	3 717	2 225	545	<u>509</u>	588	380	327	152	37	582	577	826	846	115	1 260
OTB2A	Citharus linguatula	3 416	3 778	2 529	1 618	1 836	4 964	1 909	1 426	1 358	529	724	363	644	571	583	818	702	1 261	325	1 163
	Mullus spp.	1 156	1 423	1 150	1891	2 241	2 466	2 866	2 036	1 862	1 808	1 596	2 109	3 258	513	704	860	833	1 197	352	1 025
	Eledone spp.	5 157	5 103	4 936	3 554	2 722	5 407	1 778	3 879	3 935	2 225	4 455	4 604	4 628	2 263	2 610	3 033	1 764	1711	1 258	979
	Trisopterus spp.	2 283	3 116	491	2 814	578	2 834	1848	1 162	1 106	1 462	1 209	1 122	1 033	1 532	1 482	2 382	1 735	539	560	696
	Trachurus spp.	108	459	1 105	1 075	922	5 867	1 176	2 270	629	381	607	590	1 428	1564	949	1 052	1524	544	1 076	410
	Osteichthyes	4 025	4 563	3 985	2 411	1 473	6 540	3 321	3 113	2 149	1 412	1 821	1 391	1 625	2 069	2 127	2 410	339	0	0	0
	Ommastrephidae spp.	203	539	968	1 162	497	164	7 221	3 308	3 264	5 021	3 336	5 069	5 638	1 368	3 328	1 421	3 038	2 084	3 683	1843
	Eledone spp.	6 308	1 588	8 735	15 307	15 284	3 316	2 523	7 856	16 050	7 540	16 200	15 071	7 318	8 000	4 126	1 010	510	3 787	2 179	1 629
	Merluccius merluccius	5 412	5 282	5 619	12 337	11 828	2 687	9 472	8 291	6 408	6 628	8 132	6 299	5 132	6 837	6 157	2 404	8 749	4 929	3 196	1 019
	Trisopterus spp.	1 379	507	1516	4 439	8 262	3 937	1 578	1853	4 247	5 151	4 698	3 710	3 743	2 182	2 295	1 076	1 680	1 996	1 385	726
OTR2R	Lophius spp.	801	314	1 567	5 116	7 541	1361	1479	4 866	8 623	6609	5 642	7 020	5 847	3 755	3 604	2 108	4 121	3 416	2 470	643
	Citharus linguatula	4 946	1 068	2 480	7 302	6 9 8 9	2 784	7 690	4 690	4 504	2 674	2 925	2 077	1860	1817	902	642	1 931	1 381	866	531
	Liocarcinus depurator	4 966	0	2 629	8 443	6 882	2 071	5 703	2 388	1 620	1 979	2 937	890	474	666	2 667	1 289	3 755	1532	495	198
	Cepola macrophthalma	2 740	1527	3 199	4 379	6 442	1 939	2 441	1 041	1 149	1 439	1171	1 058	799	695	258	94	174	101	335	126
	Scomber scombrus	1 144	1 685	2 116	4 090	6 215	334	2 187	2 176	1 167	2 491	4 711	3 932	976	4 216	1 357	1 307	3 045	1244	987	6/
	Osteichthyes	6 400	1 733	3 437	7 305	7722	2 940	10 500	5 442	7 849	6 904	7 103	6 483	5 358	6 150	3 217	2 242	0	0	0	0

Table 41. Species composition and landings (in kg) by métie	r for La Ràpita.
Table 11. Species composition and landings (in kg) by mene	i loi Eu nupitu.

								0	0 n	_											
		2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
	Squilla mantis	31 635	32 342	21 448	28 813	9 535	31 738	33 956	1 976	2 144	10 619	13 461	12 736	17 229	5 244	3 453	1 893 1	1 020 1	1 382	5 690 10	393
	Mullus spp.	15 688	8 919	9 132	13 038	11 523	5 983	8 691	1 613	3 882	4 481	9 408	5 224	6 078	3 947	2 089	7 806	6 937	8 957	1 166 8	353
	Sepia officinalis	3 111	2 745	2 052	3 410	1 934	5 312	5 924	404	496	2 158	3 131	2 495	2 904	2 124	2 271	609	2 214	4 498	1 825 4	202
	Penaeus kerathurus	3 236	2 911	3 544	2 537	1 993	5 344	4 010	105	149	897	2 219	1 676	2 249	867	1034	305	1 954	2 767	783	413
V LOTO	Sparus aurata	3 590	2 409	852	1 731	4 231	10 071	4 929	7 179	2 998	2 915	3 073	1552	1 954	1 079	1 217	547	2 564	1 907	1 762	906
ATO IO	Trachurus spp.	1 631	1 329	1 248	1 199	183	2 309	2 545	1 047	1 412	970	2 304	1 729	1 630	1 003	120	1 326	3 095	2 668	1 964	841
	Mugilidae spp.	2 853	1 150	3 806	1 430	860	1 791	1810	1 080	650	333	982	069	1 198	1 289	211	1 007	1 184	767	1 307	577
	Conger conger	5 635	7 030	3 635	7 776	1 425	6 299	4 038	210	173	2 247	2 430	2 134	6 380	1 258	875	244	1866	1 296	721	915
	DIVERSOS CEFALÒPODS	10 443	5 620	5 724	17 190	2 785	14 107	52	0	0	0	0	0	0	0	0	0	0	0	0	0
	Osteichthyes	4 538	4 243	6 650	4 845	1 637	4 359	6 577	2 594	2 352	3 112	5 291	6 962	6 963	3 612	1 502	323	1 985	0	0	0
	Sauilla mantis	5 063	24	16 497	5 876	74 887	14 308	19 141	44 006	28.250	19 884	20.615	20.177	10.659	26 978	24.657 1	6 975	1 104 1	3 895 1	10 10	347
	Citharus linauatula	583	•	675	51	1 065	243	1 299	1 140	1881	3 140	3 680	4 676	2 553	5 974	4 251	3 152	1 599	4 044	3 412	935
	Octopus vulaaris	0	0	0	0	0	0	m	7 448	2 137	2 213	1 791	1 807	543	2 608	6 757	1 802	1 785	1 472	1 068	010
	Mullus spp.	161	11	1 203	762	6 510	1 308	170	8 093	1430	2 820	1374	2 374	386	4 295	9 377	6 176	1 843	2 822	3 795	902
OTOTO	Merluccius merluccius	968	0	1 190	407	1 943	938	1 122	3 411	2 101	2 607	1576	3 416	1 315	1 305	1 701	1 061	665	1 353	1 029	860
97910	Conger conger	666	0	3 433	808	4 529	2 595	2 738	8 303	4 114	3 579	3 364	3 993	1740	5 719	4 365	3 462	2 202	2 010	1 431	612
	Penaeus kerathurus	272	52	775	296	2 248	1 751	1 135	3 480	1 982	630	959	899	316	1 413	2 041	2 535	1 554	1 334	1 056	463
	Bolinus brandaris	1 438	6	1 379	1 389	2 977	1 668	2 758	6 650	4 264	1 046	906	006	636	1 447	2 398	1 249	537	857	757	189
	Trachurus spp.	272	12	244	220	693	928	904	2 846	254	1857	457	1 733	<u>95</u>	1 909	4 954	2 563	1 039	1 601	2 019	<mark>06</mark>
	Osteichthyes	1 557	9	2 281	4 234	4 373	2 803	2 480	7 328	4 128	5 325	4 347	14 224	7 425	11 168	12 919	5 251	13	0	0	0
	Squilla mantis	10 879	15 153	1 318	606 6	9 912	11 573	6 049	16 601	16 237	10 090	5 841	0	2 173	2 832	8 128	8 332 1	4 349	9 444	3 218 (488
	Citharus linguatula	4 087	1 215	29	1850	1 729	4 392	4 048	7 320	5 096	4 059	3 529	0	617	1 500	2 958	2 176	4 551	3 677	3 303	253
	Merluccius merluccius	2 886	2 471	79	1 364	2 007	3 137	1 717	5 167	3 289	3 901	1 898	0	767	648	2 358	1 044	2 139	2 555	1 006	100
	Liocarcinus depurator	0	0	0	0	0	0	0	3 352	2 044	1877	2 395	0	184	205	2 789	645	2 106	3 121	1112	688
V LOTO	Bolinus brandaris	1 768	2 214	330	444	1154	1 320	753	1 617	1 778	868	472	0	450	268	706	602	991	069	348	646
47010	Lophius spp.	458	60	∞	554	226	688	500	1 132	1 678	2 377	2 055	0	160	943	2 528	355	2 083	1 162	820	489
	Octopus vulgaris	0	0	0	0	0	0	0	2 669	4 680	8 637	3 945	0	1 363	128	539	1 310	653	978	244	455
	Conger conger	1821	2 604	4	1 500	1691	2 142	834	1 837	1 657	1 278	550	0	491	486	877	1 750	1 506	853	669	227
	Trisopterus spp.	1094	430	4	1 318	1 432	3 493	670	1 967	1 706	3 190	2 030	0	194	813	1 768	2 032	2 674	1 881	1 756	0
	Osteichthyes	4 128	5 869	1 923	2 347	3 081	5 295	3 918	8 463	4 476	5 660	4 997	0	2 204	5 382	10 948	5 214	6 127	0	0	0
	Ommastrephidae spp.	221	80	0	0	0	0	2 906	3 004	2 614	5 186	1591	4 929	3 017	774	2 540	762	3 303	652	1 091	231
	Citharus linguatula	3 556	5 491	6 474	5 063	5 287	4 083	2 558	4 379	5 016	2 480	2 598	5 143	5 212	3 137	1 068	3 364	3 020	2 694	1 359 2	129
	Pagellus erythrinus	330	297	399	332	721	1 097	3 420	2 361	2 209	4 096	1 751	2 168	3 946	2 010	1 930	2 217	2 626	2 788	2 171	662
	Squilla mantis	731	7 292	11 000	3 352	4 465	1 983	2 815	3 622	2 438	861	736	5 692	7 150	1 336	475	5 056	3 711	3 651	5 507	408
	Trachurus spp.	1 336	722	375	137	1 100	4 356	7 527	2 651	2 813	4 376	2 010	2 699	3 700	1061	1 115	1 747	1 783	1 998	3 995	717
01628	Merluccius merluccius	3 759	5 103	5 309	3 652	5 006	4 101	3 507	12 677	4 930	4 040	4 184	5 775	4 394	2 836	986	3 164	3 235	1 624	2 361 1	. 336
	Liocarcinus depurator	0	0	0	0	0	0	1 074	4 466	3 019	2 545	2 977	4 044	3 245	852	1 623	4 208	4 118	3 451	5 003	227
	Lophius spp.	826	830	1 979	3 517	3 335	1 180	161	2 441	4 278	2 348	2 121	5 826	4 565	2 048	1 056	3 494	1 857	1 184	1 292	596
	Osteichthyes	4 473	7 401	7 166	5 856	7 793	7 638	10 849	11 735	8 664	7 652	6 612	18 412	13 077	10 145	4 049	7 922	5 481	0	0	0
	Brachyura	2 686	12 338	12 059	7 185	7 197	5 451	373	0	0	0	0	0	0	0	0	0	0	0	0	0
								s	o u t	4											
--------	-----------------------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	----------------
		2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
	Squilla mantis	31 635	32 342	21 448	28 813	9 535	31 738	33 956	1 976	2 144	10 619	13 461	12 736	17 229	5 244	3 453	1893	11 020	11 382	5 690	10 393
	Mullus spp.	15 688	8 919	9 132	13 038	11 523	5 983	8 691	1 613	3 882	4 481	9 408	5 224	6 078	3 947	2 089	7 806	6 937	8 957	4 166	8 353
	Sepia officinalis	3 111	2 745	2 052	3 410	1 934	5 312	5 924	404	496	2 158	3 131	2 495	2 904	2 124	2 271	609	2 214	4 498	1825	4 202
	Penaeus kerathurus	3 236	2 911	3 544	2 537	1 993	5 344	4 010	105	149	897	2 219	1 676	2 249	867	1 034	305	1 954	2 767	783	2 413
OTP14	Sparus aurata	3 590	2 409	852	1 731	4 231	10 071	4 929	7 179	2 998	2 915	3 073	1552	1 954	1 079	1 217	547	2 564	1 907	1 762	1 906
UTG IO	Trachurus spp.	1 631	1 329	1 248	1 199	183	2 309	2 545	1 047	1 412	970	2 304	1 729	1 630	1 003	120	1 326	3 095	2 668	1 964	1841
	Mugilidae spp.	2 853	1 150	3 806	1 430	860	1 791	1810	1080	650	333	982	069	1 198	1 289	211	1 007	1184	767	1 307	1577
	Conger conger	5 635	7 030	3 635	7 776	1 425	6 299	4 038	210	173	2 247	2 430	2 134	6 380	1 258	875	244	1866	1 296	721	915
	DIVERSOS CEFALÒPODS	10 443	5 620	5 724	17 190	2 785	14 107	52	0	0	0	0	0	0	0	0	0	0	0	0	0
	Osteichthyes	4 538	4 243	6 650	4 845	1 637	4 359	6 577	2 594	2 352	3 112	5 291	6 962	6 963	3 612	1 502	323	1 985	0	0	0
	Squilla mantis	5 063	24	16 497	5 876	24 882	14 308	19 141	44 006	28 250	19 884	20 615	20 177	10 659	26 978	24 657	16 925	9 104	13 895	16 081	10 347
	Citharus linguatula	583	0	675	51	1 065	243	1 299	1 140	1881	3 140	3 680	4 676	2 553	5 974	4 251	3 152	1 599	4 044	3 412	1 935
	Octopus vulgaris	0	0	0	0	0	0	e	7 448	2 137	2 213	1 791	1 807	543	2 608	6 757	1 802	1 785	1 472	1 068	1 010
	Mullus spp.	161	11	1 203	762	6510	1 308	170	8 093	1 430	2 820	1374	2 374	386	4 295	9 377	6 176	1843	2 822	3 795	902
01010	Merluccius merluccius	968	0	1 190	407	1 943	938	1 122	3 411	2 101	2 607	1576	3 416	1 315	1 305	1 701	1 061	665	1 353	1 029	860
arain	Conger conger	666	0	3 433	808	4 529	2 595	2 738	8 303	4 114	3 579	3 364	3 993	1 740	5 719	4 365	3 462	2 202	2 010	1431	612
	Penaeus kerathurus	272	52	775	296	2 248	1 751	1 135	3 480	1 982	630	959	899	316	1 413	2 041	2 535	1554	1 334	1 056	463
	Bolinus brandaris	1 438	6	1 379	1 389	2 977	1 668	2 758	6 650	4 264	1 046	906	006	636	1 447	2 398	1 249	537	857	757	189
	Trachurus spp.	272	12	244	220	693	928	904	2 846	254	1 857	457	1 733	95	1 909	4 954	2 563	1 039	1601	2 019	0 6
	Osteichthyes	1 557	9	2 281	4 234	4 373	2 803	2 480	7 328	4 128	5 325	4 347	14 224	7 425	11 168	12 919	5 251	13	0	0	0
	Squilla mantis	10 879	15 153	1 318	606 6	9 912	11 573	6 049	16 601	16 237	10 090	5 841	0	2 173	2 832	8 128	8 332	14 349	9 444	8 218	6 488
	Citharus linguatula	4 087	1 215	29	1850	1 729	4 392	4 048	7 320	5 096	4 059	3 529	0	617	1 500	2 958	2 176	4 551	3 677	3 303	3 253
	Merluccius merluccius	2 886	2 471	79	1 364	2 007	3 137	1 717	5 167	3 289	3 901	1898	0	767	648	2 358	1044	2 139	2 555	1 006	1 100
	Liocarcinus depurator	0	0	0	0	0	0	0	3 352	2 044	1877	2 395	0	184	205	2 789	645	2 106	3 121	1 112	688
ACOTO	Bolinus brandaris	1 768	2 214	330	444	1 154	1 320	753	1 617	1 778	868	472	0	450	268	706	602	991	069	348	646
	Lophius spp.	458	90	00	554	226	688	500	1 132	1 678	2 377	2 055	0	160	943	2 528	355	2 083	1 162	820	489
	Octopus vulgaris	0	0	0	0	0	0	0	2 669	4 680	8 637	3 945	0	1 363	128	539	1 310	653	978	244	455
	Conger conger	1821	2 604	4	1 500	1691	2 142	834	1837	1 657	1 278	550	0	491	486	877	1 750	1 506	853	669	227
	Trisopterus spp.	1 094	430	4	1 318	1 432	3 493	670	1 967	1 706	3 190	2 030	0	194	813	1 768	2 032	2 674	1881	1 756	0
	Osteichthyes	4 128	5 869	1 923	2 347	3 081	5 295	3 918	8 463	4 476	5 660	4 997	0	2 204	5 382	10 948	5 214	6 127	0	0	0
	Ommastrephidae spp.	221	80	0	0	0	0	2 906	3 004	2 614	5 186	1 591	4 929	3 017	774	2 540	762	3 303	652	1 091	5 231
	Citharus linguatula	3 556	5 491	6 474	5 063	5 287	4 083	2 558	4 379	5 016	2 480	2 598	5 143	5 212	3 137	1 068	3 364	3 020	2 694	4 359	4 129
	Pagellus erythrinus	330	297	399	332	721	1 097	3 420	2 361	2 209	4 096	1 751	2 168	3 946	2 010	1 930	2 217	2 626	2 788	2 171	3 662
	Squilla mantis	731	7 292	11 000	3 352	4 465	1 983	2 815	3 622	2 438	861	736	5 692	7 150	1 336	475	5 056	3 711	3 651	5 507	3 408
01010	Trachurus spp.	1 336	722	375	137	1 100	4 356	7 527	2 651	2 813	4 376	2 010	2 699	3 700	1061	1115	1 747	1 783	1 998	3 995	1 717
01020	Merluccius merluccius	3 759	5 103	5 309	3 652	5 006	4 101	3 507	12 677	4 930	4 040	4 184	5 775	4 394	2 836	986	3 164	3 235	1 624	2 361	1 336
	Liocarcinus depurator	0	0	0	0	0	0	1 074	4 466	3 019	2 545	2 977	4 044	3 245	852	1 623	4 208	4 118	3 451	2 003	1 227
	Lophius spp.	826	830	1 979	3 517	3 335	1 180	161	2 441	4 278	2 348	2 121	5 826	4 565	2 048	1 056	3 494	1 857	1184	1 292	596
	Osteichthyes	4 473	7 401	7 166	5 856	7 793	7 638	10 849	11 735	8 664	7 652	6 612	18 412	13 077	10 145	4 049	7 922	5 481	0	0	0
	Brachyura	2 686	12 338	12 059	7 185	7 197	5 451	373	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 42. Species composition and landings (in kg) by *métier* for Les Cases d'Alcanar.

Annex 4 Monthly size-frequency distribution for 2021

Figure 135. Monthly length-frequency distribution of Hake at different depth strata (SCS; Shallow Continental Shelf, CS; Continental Shelf, US; Upper Slope and LS; Lower Slope) from January to June 2021. Dashed red line indicates the MCRS (Minimum Conservation Reference Size). (n) total number of measured individuals.

Figure 136. Monthly length-frequency distribution of Hake atdifferent depth strata (SCS; Shallow Continental Shelf, CS; Continental Shelf, US; Upper Slope and LS; Lower Slope) from July to December 2021. Dashed red line indicates the MCRS (Minimum Conservation Reference Size). (n) total number of measured individuals.

Norway lobster (Nephrops norvegicus)

Figure 137. Monthly length-frequency distribution of Norway lobster at different depth strata (SCS; Shallow Continental Shelf, CS; Continental Shelf, US; Upper Slope and LS; Lower Slope) from January to June 2021. Dashed red line indicates the MCRS (Minimum Conservation Reference Size). (n) total number of measured individuals.

Figure 138. Monthly length-frequency distribution of Norway lobster at different depth strata (SCS; Shallow Continental Shelf, CS; Continental Shelf, US; Upper Slope and LS; Lower Slope) from July to December 2021. Dashed red line indicates the MCRS (Minimum Conservation Reference Size). (n) total number of measured individuals.

Blue and red shrimp (Aristeus antennatus)

Figure 139. Monthly length-frequency distribution of Blue and red shrimp at different depth strata (US; Upper Slope and LS; Lower Slope) from January to June 2021. (n) total number of measured individuals.

Figure 140. Monthly length-frequency distribution of Blue and red shrimp at different depth strata (US; Upper Slope and LS; Lower Slope) from July to December 2021. (n) total number of measured individuals.

Horned octopus (Eledone cirrhosa)

Figure 141. Monthly weight-frequency distribution of Horned octopus at different depth strata (SCS; Shallow Continental Shelf, CS; Continental Shelf, US; Upper Slope and LS; Lower Slope) from January to June 2021. (n) total number of measured individuals.

Figure 142. Monthly weight-frequency distribution of Horned octopus at different depth strata (SCS; Shallow Continental Shelf, CS; Continental Shelf, US; Upper Slope and LS; Lower Slope) from July to December 2021. (n) total number of measured individuals.

Spottail mantis shrimp (Squilla mantis)

Figure 143. Monthly length-frequency distribution of Spottail mantis shrimp at different depth strata (SCS; Shallow Continental Shelf, CS; Continental Shelf) from January to June 2021. (n) total number of measured individuals.

Figure 144. Monthly length-frequency distribution of Spottail mantis shrimp at different depth strata (SCS; Shallow Continental Shelf, CS; Continental Shelf) from July to December 2021. (n) total number of measured individuals.

Caramote prawn (Penaeus kerathurus)

Figure 145. Monthly length-frequency distribution of Caramote prawn at different depth strata (SCS; Shallow Continental Shelf, CS; Continental Shelf) from January to June 2021. (n) total number of measured individuals.

Figure 146. Monthly length-frequency distribution of Caramote prawn at different depth strata (SCS; Shallow Continental Shelf, CS; Continental Shelf) from July to December 2021. (n) total number of measured individuals.

Figure 147. Monthly length-frequency distribution of European sardine from 2021. Dashed red line indicates the MCRS (Minimum Conservation Reference Size). (n) total number of measured individuals.

Anchovy (Engraulis encrasicolus)

Figure 148. Monthly length-frequency distribution of Anchovy from 2021. Dashed red line indicates the MCRS (Minimum Conservation Reference Size). (n) total number of measured individuals.

Mediterranean sand eel (Gymnammodytes cicerelus)

Figure 149. Monthly length-frequency distribution of Mediterranean sand eel from 2021. (n) total number of measured individuals.

Smooth sand eel (Gymnammodytes semisquamatus)

Figure 150. Monthly length-frequency distribution of Smooth sand eel from 2021. (n) total number of measured individuals.

Figure 151. Monthly weight-frequency distribution of Common octopus from January to June 2021. Dashed red line indicates the MCRW (Minimum Conservation Reference Weight). (n) total number of measured individuals.

Figure 152. Monthly weight-frequency distribution of Common octopus from July to December 2021. Dashed red line indicates the MCRW (Minimum Conservation Reference Weight). (n) total number of measured individuals.

[201]